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Part I: Basic Model Options,
Technical Settings, and Output

Sections

1 Introduction to Part I: Basic Models

Latent GOLD 5.1 Basic implements the most important types of latent class
(LC) and finite mixture (FM) models in three submodules called Cluster,
DFactor, and Regression. It also contains a submodule called Step3, which
can be used for step-three modeling and scoring. These are tools which are
often needed after performing an analysis with Cluster, DFactor, or Regres-
sion.

Let us first look at the Cluster, DFactor, and Regression submodules.
The differences between these arise from the fact that the application types
of latent class analysis differ with respect to the required data organization
and nature of the latent variables (see table).

Data Format
Single record with Ti records with

Latent Variable(s) T responses yit single response yit
Single nominal x Cluster Regression
Multiple ordinal x1, x2,..., xL DFactor –

In the Cluster and DFactor submodules, it is assumed that the data is in
the standard rectangular file format, in which there is a single record for each
case i. The T response variables, items, or indicators – which are denoted
by yit – appear in T columns, 1 ≤ t ≤ T . Because of this multivariate file
structure, it is straightforward to deal with response variables that are not of
the same scale type; that is, we may build LC and FM models for combina-
tions of nominal, ordinal, continuous, and count variables. In the Regression
submodule, on the other hand, the Ti responses of case i appear in separate
records connected by an ID variable. In other words, the data is in the form
of a repeated-measures or two-level file with multiple observations of the same
dependent variable. Compared to the Cluster and DFactor submodules, the
Regression submodule is more general in that the number of responses may
differ across cases (as indicated by the index i in Ti) and that various types
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of constraints can be imposed on the model parameters, but also somewhat
less general in that the Ti responses should be of the same scale type.

The data structure also has implications for the types of exogenous vari-
ables that can be used in the analysis. In the Cluster and DFactor submodule,
one can use exogenous variables that vary between cases and that may be
used to predict class membership. In Latent GOLD, such exogenous vari-
ables are called covariates, and denoted as zcovir , 1 ≤ r ≤ R, where R is the
number of covariates. LC Regression models can not only contain covariates,
but also exogenous variables that may vary within cases and that are used
to predict the repeated measurements of the response variable of interest.
These exogenous variables are referred to as predictors and denoted by zpreditq ,
1 ≤ q ≤ Q, where Q is the number of predictors.

As mentioned above, the nature of the latent variables also differs across
the three submodules. In the Cluster and Regression submodules, it is as-
sumed that there is a single nominal latent variable x with K categories,
1 ≤ x ≤ K. The categories of this nominal latent variable are called Clus-
ters or Classes. In the DFactor submodule, on the other hand, a model may
include L ordinal (or dichotomous) latent variables called discrete factors
(DFactors), which are denoted as x`, 1 ≤ ` ≤ L. The number of levels
of the `th DFactor equals K`. As will be explained in more detail in Sec-
tion 4, a model with L DFactors is, in fact, a restricted Cluster model with
K =

∏L
`=1K` latent classes.

The differences between the submodules described above have implica-
tions for the application types corresponding to each of the three submod-
ules. The Cluster submodule can be used to estimate standard LC models
for categorical indicators, as well as mixture-based clustering models for con-
tinuous and mixed indicators. One may include covariates to predict class
membership, and because of its multivariate data structure, it is also possible
to relax the local independence assumption. Cluster also implements several
restricted variants of the traditional LC model, such as the LC Rasch model
and the order-restricted LC model.

The LC DFactor model is a scaling tool similar to traditional factor anal-
ysis and multidimensional item response theory (IRT) models. More specif-
ically, it can be used as an exploratory or confirmatory factor-analytic tool
when not all indicators are continuous variables. The Latent GOLD program
provides output similar to traditional factor analysis, such as loadings, com-
munalities, and correlations. A one-DFactor model yields a semi-parametric
variant of well-known undimensional IRT models, such as Rasch, Birnbaum,
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and Nominal Response models.
The basic idea of the Regression submodule is that one specifies a re-

gression model from the generalized linear modeling (GLM) family in which
parameters differ across latent classes. One important application type is
clustering or segmentation based on a regression model, for example, us-
ing data obtained by a rating-based conjoint experiment. Other applications
include two-level modeling and growth modeling in which the latent class ap-
proach serves as a nonparametric random-effects modeling tool. Because of
the two-level data structure and the various options for imposing parameter
constraints (equality restrictions across Classes, zero and other fixed-value
restrictions, and order restrictions), the Regression submodule is the most
flexible submodule in terms of model constraints. For example, it can be used
to estimate the most important types of restricted variants of the standard
LC model, as well as multiple-group variants of the standard LC model, so
long as the indicators are of the same type.

The Step3 submodule can be used for two purposes: bias-adjusted step-
three modeling and computation of the scoring equation. These activities
are relevant after performing a LC analysis with Cluster, DFactor, or Re-
gression. Step-three modeling can be used to investigate the relationship
between latent classes and external variables using the class definitions from
a prior analysis. The external variables can either be covariates predicting
the classes or outcome variables affected by the classes. Note that step-three
modeling is a simpler alternative for including covariates in the model or
including the outcomes as additional indicators in the model.

Computation of a scoring equation is useful if one desires to classify new
observations based on a LC model built using Latent GOLD. The scoring
equation can be used to obtain class predictions outside Latent GOLD, for
example, in SPSS using the syntax file produced by Step3-Scoring.

The next sections describe the various types of LC and FM models imple-
mented in Latent GOLD 5.1 Basic in more detail. First, we present the main
components needed in any Latent GOLD model. Then, attention is paid
to the three special cases “LC Cluster”, “LC DFactor”, and “LC Regres-
sion”, and to step-three modeling and scoring as implemented in the Step3
submodule. Subsequently, we describe estimation procedures and the corre-
sponding technical options. The output provided by the various submodules
is described in the last section of this part of the manual.
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2 Components of a Latent GOLD Model

The definition of a LC or FM model typically consists of three parts:

1. the assumed probability structure, which defines the relevant set of con-
ditional independence assumptions among the variables in the model,

2. the assumed distributional forms for the response variables, which will
depend on the scale types of the variables concerned,

3. the regression-type constraints used to gain parsimony in the descrip-
tion of the relationships between the variables in the model.

Latent GOLD automatically sets up the correct probability structure for
each of the three special cases, Cluster, DFactor, and Regression. Before pre-
senting these special cases, we describe the general probability structure, the
available distribution functions for the indicators and dependent variables,
and the corresponding regression-type constraints. More details about the
exact form of these three components in the three submodules can be found
in Sections 3, 4, and 5. The last subsection provides details on the coding of
nominal variables appearing in the regression equations.

2.1 Probability Structure

Above we already introduced the most important notation – yit, x, z
cov
ir , and

zpreditq . It should be noted that the symbol x can also refer to the latent classes
in a DFactor model, where x is obtained by combining the x` values of the
multiple discrete factors. We will use bold face for vectors; that is, the sym-
bols yi, zcovi , and zpredi refer to the entire set of responses, covariate values,
and predictor values of case i. With zi, we refer to all exogenous variables
without making a distinction between covariates and predictors. We will also
use the symbol yih to denote one of the H subsets of yit variables, and T ∗h to
denote the number of variables in subset h. By allowing a grouping of indi-
cators into subsets, it is possible to specify models with (local) dependencies
between indicator within latent classes.

Each of the Latent GOLD submodules is based on the same general mix-
ture model probability structure that defines the relationships between the
exogenous, latent, and response variables:

f(yi|zi) =
K∑
x=1

P (x|zi) f(yi|x, zi) =
K∑
x=1

P (x|zi)
H∏
h=1

f(yih|x, zi) (1)
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As can be seen, we are specifying a model for f(yi|zi), which is the probabil-
ity density corresponding to a particular set of yi values given a particular
set of zi values. The middle part of equation (1) shows that the unobserved
variable x intervenes between the zi and the yi variables. Here, P (x|zi) is
the probability of belonging to a certain latent class given an individual’s re-
alized covariate values (the mixing weights), and f(yi|x, zi) is the probability
density of yi given x and zi (the mixture densities). Thus, x variables may
be influenced by z variables, and y variables may be influenced by x and z
variables.

The last part of the model formulation described in equation (1) implies
that y variables belonging to different sets are assumed to be mutually inde-
pendent given the latent and exogenous variables:

f(yi|x, zi) =
H∏
h=1

f(yih|x, zi).

On the other hand, it is also important to note that the y’s belonging to the
same set h may be correlated within classes.

Let us look at some simpler special cases of the general model given in
equation (1). One of these is the basic LC Cluster model that assumes local
independence among all indicators and that does not include covariates; that
is,

f(yi|zi) =
K∑
x=1

P (x) f(yi|x, zi) =
K∑
x=1

P (x)
T∏
t=1

f(yit|x).

Each of the f(yit|x) is now a univariate probability density. Moreover, the
mixing weights or prior class membership probabilities do not depend on
covariates.

Another special case is the LC or FM Regression model. Also in these
models, we assume local independence among the multiple responses yit.
Typical of Regression models is that the number of replications Ti may differ
across cases and that there is a distinction between covariates and predictors.
The probability structure then becomes

f(yi|zi) =
K∑
x=1

P (x|zcovi ) f(yi|x, zpredit ) =
K∑
x=1

P (x|zcovi )
Ti∏
t=1

f(yit|x, zpredit ).
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2.2 Conditional Distributions

Depending on the scale types of the variables in a set, a particular distri-
butional form is assumed for yih. A set may consist of one or more cate-
gorical (nominal or ordinal) variables, one or more continuous variables, or
a single count variable. When the variables are categorical, a multinomial
distribution is assumed for yih. For continuous variables, we use (multi-
variate/censored/truncated) normal distributions. Counts can be modeled
via (truncated/overdispersed) Poisson or (truncated/overdispersed) binomial
distributions.2 When referring to the distributions of discrete response vari-
ables (ordinal, nominal, Poisson count, or binomial count), we will use the
symbol P (·) instead of f(·) to indicate that we are dealing with a probability
instead of a density function.

Within the context of the generalized linear modeling (GLM) framework,
the assumed distribution function for a response variable is denoted as the
error function. Moreover, the transformation of the expected value of the
response variable that yields the linear predictor that can be restricted by a
regression model, is referred to as the link function (McCullagh and Nelder,
1983). Below, we define the linear predictors and the corresponding regres-
sion models for categorical, count, and continuous response variables.

2.2.1 Nominal and ordinal dependent variables

Let us first have a look at the univariate case that arises if response variable
t is independent of the other response variables given x and zi. Let m denote
a particular category of yit and Mt the number of categories, where, 1 ≤ m ≤
Mt. Nominal and ordinal dependent variables are assumed to come from a
multinomial distribution with Mt entry, which means that the distribution
for each of yit is of the form

P (yit = m|x, zi) = πm|t,x,zi =
exp(ηtm|x,zi)∑

m′=1 exp(ηtm′|x,zi)
.

2In the Regression submodule, it is also possible to use zero-inflated variants of these
distributions, which amounts to adding one or more classes that give a certain response
with probability one.
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Here, πm|t,x,zi is the probability of giving response m given x and zi.
3 Fur-

thermore, ηtm|x,zi denotes the linear term that can be further restricted by
a regression model, yielding a multinomial logistic regression model with a
nominal response variable and an adjacent-category ordinal logistic regres-
sion model with an ordinal response variable.

In the multivariate case, we get

P (yih = m|x, zi) = πm|h,x,zi =
exp(ηhm|x,zi)∑

m′ exp(ηhm′|x,zi)
,

that is, a multinomial distribution with M∗
h =

∏
t∈hMt entries formed by the

joint categorical variable yih formed by cross-tabulating the categories of the
variables in subset h. The linear model for ηhm|x,zi will yield a multivariate
logistic model.

2.2.2 Continuous dependent variables

In the case of a single continuous yit, we assume that it comes from a uni-
variate normal distribution; i.e.,

f(yit|x, zi) =
1√

2πσ2
t,x

exp

−1

2

(
yit − µt,x,zi

)2

σ2
t,x

 , (2)

where µt,x,zi and σ2
t,x are the mean and the variance, respectively.

In the multivariate case, continuous dependent variables are modeled by
means of multivariate normal distributions; that is,

f(yih|x, zi) = (2π)−Kh/2 |Σh,x|−1/2

exp
{
−1

2

(
yih − µh,x,zi

)′
Σ−1
h|x

(
yih − µh,x,zi

)}
. (3)

Here, the vector µh,x,zi contains the conditional expectations of the y vari-
ables belonging to set h, and Σh,x their variances and covariances. As is
indicated by their indices, expectations may depend both on the latent class
to which one belongs and on an individual’s covariate values, whereas vari-
ances and covariances may only be class dependent.

3The multinomial probability density for a single “trial” is sometimes written as∏Mt

m=1(πm|t,x,zi
)δitm , where δitm is an indicator variable taking the value 1 if yit = m,

and otherwise 0.

11



Two univariate variants that can be used for continuous dependent vari-
ables are left truncated and left censored normal distributions. The truncated
normal model can be used if only cases with yit > 0 are included in the sam-
ple. Its form is

f(yit|x, zi, yit > 0) =
f(yit|x, zi)

1− F (0|µt,x,zi , σ2
t,x)

,

where f(yit|x, zi) is the univariate normal density defined in equation (2) and
F (0|µt,x,zi , σ

2
t,x) the cumulative univariate normal distribution evaluated at

y = 0.
The censored normal model is useful if yit ≥ 0 for all i and t, but with

many more yit = 0 than can be expected based on a univariate normal distri-
bution. A censored normal distribution is obtained by assuming a univariate
normal distribution f(yit|x, zi) if yit > 0 and a cumulative univariate normal
distribution F (0|µt,x,zi , σ

2
t,x) if yit = 0.

In each of the normal models, the linear predictor is simply the expecta-
tion of the distribution: µt,x,zi = ηtx,zi . Restricting the linear term ηtx,zi can
be achieved by a standard linear regression model.

2.2.3 Poisson counts

A count or a number of events can be modeled by a Poisson distribution.
The form of this distribution is

P (yit|x, zi, eit) =
1

yit!
(θt,x,zieit)

yit exp(−θt,x,zieit)

=
1

yit!
(µt,x,i)

yit exp(−µt,x,i).

Here, θt,x,zi denotes the Poisson rate and eit the exposure of case i to event t,
and µt,x,i = θt,x,zieit. In the Cluster and DFactor submodules, the exposure is
assumed to be equal to 1 for all cases, whereas in the Regression submodule
the exposure is a variable that can be specified by the user.

The truncated Poisson distribution, which can be used if only cases with
nonzero counts are included in the sample, has the form

P (yit|x, zi, eit, yit > 0) =
P (yit|x, zi, eit)

1− P (0|x, zi, eit)
, (4)
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where P (yit|x, zi, eit) is the Poisson probability of having yit events and
P (0|x, zi, eit) = exp(−t, x, i) is the Poisson probability of having zero events.

In the Regression submodule, it is also possible to specify models for
overdispersed Poisson counts. By assuming that the Poisson rate follows
a gamma distribution, one obtains a negative-binomial distribution (Long,
1997; Simonoff, 2003). The exact form of this distribution is

P (yit|x, zi, eit) =
Γ(yit + 1/σ2

t,x)

yit! Γ(1/σ2
t,x)

(
1/σ2

t,x

1/σ2
t,x + µt,x,i

)1/σ2
t,x
(

µt,x,i
1/σ2

t,x + µt,x,i

)yit
,

where Γ(·) is the gamma function. The additional parameter σ2
t,x denotes the

variance of the gamma mixing distribution, also referred to as the dispersion
parameter.4 As in the standard Poisson case, the class-specific expected value
of yit equals µt,x,i. The variance is, however, no longer equal to the expected
value µt,x,i, but is a factor 1 + σ2

t,x µt,x,i larger. In other words, the larger the
value of σ2

t,x, the larger the amount of overdispersion. Note that for σ2
t,x = 0

we have again a Poisson distribution.
A truncated negative-binomial distribution is defined in the same manner

as a truncated Poisson distribution (see equation 4), with the difference that
now P (yit|x, zi, eit) and P (0|x, zi, eit) are negative-binomial probabilities of
having yit and zero events.

The Poisson rate θt,x,zi can be written in terms of a linear predictor ηtx,zi
as follows:

θt,x,zi = exp(ηtx,zi),

or
µt,x,i = exp(ηtx,zi) eit,

which yields the well-known log-linear Poisson regression model.

2.2.4 Binomial counts

Counts can also be modeled by a binomial model for multiple trials. The
binomial distribution for counts equals

P (yit|x, zi, eit) =

(
eit!

yit! (eit − yit)!

)
(πt,x,zi)

yit(1− πt,x,zi)
(eit−yit).

4Alternatives notations are α for the dispersion parameter and ν for its inverse.
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Here, eit denotes the total number of trials, which corresponds to the max-
imum number of events (or successes) that an individual can experience at
replication t. In the Cluster and DFactor submodules, the total is assumed
to be equal to the largest observed yit in the sample. In the Regression sub-
module, on the other hand, the total (exposure) is a variable that can be
specified by the user.

A truncated binomial distribution is defined in the same manner as a
truncated Poisson distribution (see equation 4), with the difference that now
P (yit|x, zi, eit) and P (0|x, zi, eit) = (1 − πt,x,zi)

eit are binomial probabilities
of having yit and zero events.

In the Regression submodule, it is also possible to specify models for
overdispersed binomial counts. By assuming that the success probabilities
follow a beta distribution, one obtains a beta-binomial distribution (Agresti,
2000; Simonoff, 2003). The exact form of this distribution is

P (yit|x, zi, eit) =
B
(
πt,x,zi/σ

2
t,x + yit, (1− πt,x,zi)/σ

2
t,x + (eit − yit)

)
B
(
πt,x,zi/σ

2
t,x, (1− πt,x,zi)/σ2

t,x

) ,

where B(·) is the beta function. The parameter σ2
t,x, which is referred to

as the dispersion parameter, affects the variance of the beta mixing dis-
tribution.5 As in the standard binomial case, the class-specific expected
value of yit equals πt,x,zieit. The variance is, however, no longer equal to
πt,x,zi(1− πt,x,zi)eit, but is a factor 1 + (eit− 1)σ2

t,x/(1 + σ2
t,x) larger. In other

words, the larger the value of σ2
t,x, the larger the amount of overdispersion.

For σ2
t,x = 0, the beta-binomial distribution reduces to the standard binomial

distribution.
A truncated beta-binomial distribution is defined in the same manner as a

truncated Poisson distribution (see equation 4), with the difference that now
P (yit|x, zi, eit) and P (0|x, zi, eit) are beta-binomial probabilities of having yit
and zero events.

The parameterization of the binomial probability πt,x,zi is similar to the
one for dichotomous categorical y variables; i.e.,

πt,x,zi =
exp(ηtx,zi)

1 + exp(ηtx,zi)
.

5An alternative formulation uses the symbol α for the term π/σ2 and β for (1−π)/σ2,
with π = α/(α+ β) and σ2 = 1/(α+ β).
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As can be seen, this yields a binary logistic regression model with linear
predictor ηtx,zi .

2.2.5 Latent variables

As nominal and ordinal dependent variables, the values on the latent vari-
ables given a person’s covariate values are assumed to come from a (joint)
multinomial distribution. The multinomial probability P (x|zi) is parameter-
ized as follows:

P (x|zi) = πx|zi =
exp(ηx|zi)∑K

x′=1 exp(ηx′|zi)
.

In the Cluster and Regression submodules, we have a single nominal latent
variable, which means that this yields a standard multinomial logit model.
In DFactors models, depending on whether we have a single or multiple
ordinal latent variables, we have a standard or a multivariate version of the
adjacent-category ordinal logit model.

2.3 Types of GLM-family Regression Models

The exact form that the four linear predictors introduced above – ηtx,zi , η
t
m|x,zi ,

ηhm|x,zi , and ηx|zi– take on in the Cluster, DFactor, and Regression submodules
discussed is given later on. Here, we will provide a more generic formulation
of the regression models of interest, in which we use the symbol y for the
outcome variable that could also be a latent variable (in ηx|zi) and zip for an
explanatory variable that could also be a latent variable (in ηtx,zi , η

t
m|x,zi , and

ηtm|x,zi).
With a continuous response variable, we have a standard linear regression

model

ηzi = µzi = β0 +
P∑
p=1

βp · zip,

with intercept β0 and regression coefficients βp.
For Poisson counts, we use a log-linear Poisson model and for binomial

counts a binary logistic regression model:

ηzi = log(θzi) = β0 +
P∑
p=1

βp · zip,
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ηzi = log

(
πzi

1− πzi

)
= β0 +

P∑
p=1

βp · zip,

where again β0 and βp are the intercept and the regression coefficients.
Slightly more complicated is the case of a nominal outcome variable.

When using dummy coding with the reference category denoted by m′, we
get the following definition of the linear term ηm|zi :

ηm|zi = log

(
P (y = m|zi)
P (y = m′|zi)

)
= βm0 +

P∑
p=1

βmp · zip,

where βm′p = 0, for 0 ≤ p ≤ P . This yields what is usually referred to as the
baseline-category logit model (Agresti, 2002). Note that this multinominal
logistic regression model contains M − 1 sets of free β parameters.

An alternative to dummy coding is to use effect coding for the dependent
variable, which yields the following definition of ηm|zi :

ηm|zi = log

 P (y = m|zi)[∏M
m′=1 P (y = m′|zi)

]1/M
 = βm0 +

P∑
p=1

βmp · zip

where
∑M
m=1 βm′p = 0, for 0 ≤ p ≤ P . As can be see, probability of answering

in category m is now compared with the average (geometric mean) of the
probabilities of all M categories.

With an ordinal dependent variable we make use of the adjacent-category
ordinal logit model (Agresti, 2002; Goodman, 1979; Magidson, 1996) in which

ηm|zi = βm0 +
P∑
p=1

β·p · y∗m · zip,

irrespective of whether one uses dummy or effect coding for the dependent
variable. As can be seen, compared to the nominal logit model, this ordinal
logit model is obtained by the restriction that βmp = βp · y∗m, where y∗m is
the score assigned to category m of the dependent variable.6 What one will
typically interpret are the M − 1 adjacent-category logits

log

(
P (y = m+ 1|zi)
P (y = m|zi)

)
= ηm+1|zi − ηm|zi = β∗m0 +

P∑
p=1

β·p · (y∗m+1 − y∗m) · zip,

6In the case that the y∗m scores sum to 0, the linear predictor can be interpreted as
with effect coding of a nominal dependent variable. When the score for the first category,
y∗1 , is set equal to 0, one gets a baseline-category logit, with m = 1 as reference category.
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where β∗m0 = βm+1,0 − βm0. In the case of category scores with an equal
mutual distance of 1, the adjacent-category logits simplify to

log

(
P (y = m+ 1|zi)
P (y = m|zi)

)
= β∗m0 +

P∑
p=1

β·p · zip.

As can be seen, in fact, we have a standard binary logistic regression model
for each pair of adjacent categories, where the intercept is pair specific but
the regression weights are equal across pairs.

Let us now look at the case of a multivariate nominal/ordinal response
variable. Assume that the set of interest consists of two nominal variables
y1 and y2. In that case, the linear predictor in the model for the joint
multinomial probability will be of the form

ηm1,m2|zi = β1
m10 +

P∑
p=1

β1
m1p
· zip + β2

m20 +
P∑
p=1

β2
m2p
· zip + β12

m1m2
,

where the superscripts of the β parameters indicate to which dependent vari-
able the term concerned belongs. As can be seen, the first two terms corre-
spond to y1 and the third and fourth to y2. The new term compared to the
multinomial logistic regression described above is the parameter capturing
the within-class association between y1 and y2, denoted by β12

m1m2
. Inclu-

sion of such a two-way association term is what happens if two categorical
(nominal or ordinal) variables are assumed to be locally dependent.

If both y1 and y2 are ordinal variables, we restrict β1
m1p

= β1
·p ·y∗m1

, β2
m2p

=
β2
·p · y∗m2

, and β12
m1m2

= β12
·· · y∗m1

· y∗m2
. If y1 is nominal and y2 ordinal,

we get β2
m2p

= β2
·p · y∗m2

, and β12
m1m2

= β12
m1· · y

∗
m2

. In other words, as in
the standard adjacent-category ordinal logit model, the information that a
categorical response variable is ordinal implies that its category scores are
used to restrict its relationships with other variables.

2.4 Coding of Nominal Variables

In the description of the various regression models, we assumed that predic-
tors and covariates were numeric. There is no such limitation however, as
Latent GOLD allows one or more of these explanatory variables to be spec-
ified to be nominal. For nominal variables, Latent GOLD sets up the design
vectors using either effect (ANOVA-type) coding or dummy coding with the
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first or last category as reference category for identification. Effect coding
means that the parameters will sum to zero over the categories of the nom-
inal variable concerned, In dummy coding, the parameters corresponding to
the reference category are fixed to zero.

Suppose we have a nominal predictor variable with 4 categories. The
effect coding constraint implies that the corresponding 4 effects should sum
to 0. This is accomplished by defining a design matrix with 3 “numeric”
predictors zi1, zi2, and zi3. The design matrix that is set up for the 3 non-
redundant terms (β1, β2, β3) is as follows:

category 1
category 2
category 3
category 4

1 0 0
0 1 0
0 0 1
−1 −1 −1

,

where each row corresponds to a category of the explanatory variable con-
cerned and each column to one of the three parameters. Although the pa-
rameter for the last category is omitted from the model, you do not notice
that because it is computed by the program after the model is estimated.
The parameter for the fourth category equals −∑3

p=1 βp; that is, minus the
sum of the parameters of the three other categories. This guarantees that
the parameters sum to zero since

∑3
p=1 βp −

∑3
p=1 βp = 0.

Instead of using effect coding, it is also possible to use dummy coding.
Depending on whether one uses the first or the last category as reference
category, the design matrix will look like this

category 1
category 2
category 3
category 4

0 0 0
1 0 0
0 1 0
0 0 1

,

or this
category 1
category 2
category 3
category 4

1 0 0
0 1 0
0 0 1
0 0 0

.

Whereas in effect coding the category-specific effects should be interpreted in
terms of deviation from the average, in dummy coding their interpretation is
in terms of difference from the reference category. Note that the parameter
for the reference category is omitted, which implies that it is equated to 0.
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2.5 Known-Class Indicator

Sometimes, one has a priori information – for instance, from an external
source – on the class membership of some individuals. For example, in a four-
class situation, one may know that case 5 belongs to latent class 2 and case
11 to latent class 3. Similarly, one may have a priori information on which
class cases do not belong to. For example, again in a four-class situation,
one may know that case 19 does not belong to latent class 2 and that case 41
does not belong to latent classes 3 or 4. In Latent GOLD, there is an option
– called “Known Class” – for indicating to which latent classes cases do not
belong to.

Let τ i be a vector of 0-1 variables containing the “Known Class” infor-
mation for case i, where τix = 0 if it is known that case i does not belong to
class x, and τix = 1 otherwise. The vector τ i modifies the general probability
structure defined in equation (1) as follows:

f(yi|zi, τ i) =
K∑
x=1

τix P (x|zi) f(yi|x, zi) .

As a result of this modification, the posterior probability of belonging to class
x will be equal to 0 if τix = 0.

The known-class option has three important applications.

1. It can be used to estimate models with training cases; that is, cases
for which class membership has been determined using a gold standard
method. Depending on how this training information is obtained, the
missing data mechanism will be MCAR (Missing Completely At Ran-
dom, where the known-class group is a random sample from all cases),
MAR (Missing At Random, where the known-class group is a random
sample given observed responses and covariate values), or NMAR (Not
Missing At Random, where the known-class group is a non-random
sample and thus may depend on class membership itself). MAR oc-
curs, for example, in clinical applications in which cases with more than
a certain number of symptoms are subjected to further examination to
obtain a perfect classification (diagnosis). NMAR may, for example,
occur if training cases that do not belong to the original sample under
investigation are added to the data file.

Both in the MAR and MCAR situation, parameter estimates will be un-
biased. In the NMAR situation, however, unbiased estimation requires
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that separate class sizes are estimated for training and non-training
cases (McLachlan and Peel, 2000). This can easily be accomplished
by expanding the model of interest with a dichotomous covariate that
takes on the value 0 for training cases and 1 for non-training cases.

2. Another application is specifying models with a partially missing dis-
crete variable that affects one or more response variables. An important
example is the complier average causal effect (CACE) model proposed
by Imbens and Rubin (1997), which can be used to determine the effect
of a treatment conditional on compliance with the treatment. Compli-
ance is, however, only observed in the treatment group, and is missing
in the control group. In Latent GOLD, this CACE model can be speci-
fied as a LC Regression model, in which class membership (compliance)
is known for the treatment group, and which a treatment effect is spec-
ified only for the compliance class.

3. The known-class indicator can also be used to specify multiple-group LC
models. Suppose we have a three-class model and two groups, say males
and females. A multiple-group LC model is obtained by indicating that
there are six latent classes, were males may belong to classes 1–3 and
females to classes 4–6. To get the correct output, the grouping variable
should not only be used as the known-class indicator, but also as a
nominal covariate.

3 Latent Class Cluster Models

The LC Cluster model implemented in Latent GOLD is a model with:

1. a single nominal latent variable x,

2. T response variables yit (indicators) that can be nominal, ordinal, con-
tinuous, and/or counts,

3. R numeric or nominal covariates zcovir affecting x,

4. direct relationships between indicators and/or direct effects of covari-
ates on indicators.
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Below we first describe the basic components of a LC Cluster model; that
is, the underlying probability structure and the form of the linear terms.
Then, we pay attention to the most important special cases of the Cluster
model: standard LC analysis and mixture-model clustering. First, we de-
scribe the standard LC model for nominal and ordinal categorical y variables
without covariates. Then, we show how covariates are included in the model.
Next, we indicate how the assumption of local independence is relaxed or,
in other words, how z–y and y–y relationships are included in a model. The
next two parts of this section deal with LC Cluster models for continuous
y variables and LC Cluster models for mixed-mode data, respectively. The
last section gives an overview of possible parameter restrictions.

3.1 Probability Structure and Linear Predictors

Assuming that the model of interest contains covariates, the following struc-
ture serves as the starting point of a LC Cluster analysis:7

f(yi|zcovi ) =
K∑
x=1

P (x|zcovi )
T∏
t=1

f(yit|x). (5)

In other words, covariates affect the latent variable (the Clusters) but have
no direct effects on the indicators, and indicators are assumed to be mu-
tually independent given cluster membership. The most general probability
structure that can be used, however, also allows the inclusion of direct effects
of covariates on indicators and associations/correlations between indicators
within Clusters. For the latter, we have to group the T indicators into H
sets as was already explained in Section 2, where the indicators belonging to
the same set may be correlated within classes. The most general LC Cluster
probability structure is

f(yi|zcovi ) =
K∑
x=1

P (x|zcovi )
H∏
h=1

f(yih|x, zcovi ), (6)

where the exact form of each of the class-specific conditional distributions
f(yih|x, zcovi ) depends on the scale types of the variables in subset h.

7Without covariates, this simplies to f(yi) =
∑K
x=1 P (x)

∏T
t=1 f(yit|x).
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In Cluster models, one can make use of four linear predictors: ηtx,zi , η
t
m|x,zi ,

ηhm|x,zi , and ηx|zi . For continuous and count indicators, we get

ηtx,zi = βt0 + βtx0 +
R∑
r=1

βtr · zcovir ,

where βt0 is the intercept, βtx0 the effect of the Clusters on yit, and βtr the
direct effect of covariate r on the indicator concerned. For identification,
either effect or dummy coding constraints have to be imposed on βtx0; that
is, either

∑K
x=1 β

t
x0 = 0, βt10 = 0, or βtK0 = 0.

For nominal indicators, we use multinomial logit models having linear
predictors of the form

ηtm|x,zi = βtm0 + βtmx0 +
R∑
r=1

βtmr · zcovir ,

with restrictions
∑K
x=1 β

t
mx0 = 0, βtm10 = 0, or βtmK0 = 0 for the latent variable

x, and a similar set of identification constraints for the dependent variable:∑Mt
m=1 β

t
mx0 = 0, βt1x0 = 0, or βtMtx0 = 0.

An ordinal response variable is modeled with an adjacent-category logit
model in which

ηtm|x,zi = βtm0 + βt·x0 · yt∗mt +
R∑
r=1

βt·r · yt∗mt · z
cov
ir .

Here, yt∗mt is the score assigned to category mt of the tth indicator.
With categorical indicators and local dependencies, we get

ηhm|x,zi =
∑
t∈h

{
βtmt0 + βtmtx0 +

R∑
r=1

βtmtr · z
cov
ir

}
+

∑
t∈h,t′∈h,t<t′

βtt
′

mtmt′
,

where the term βtt
′

mtmt′
captures the association between indicators t and t′

in set h. For ordinal indicators, we impose the appropriate constraints using
the category scores yt∗mt .

The linear term in the multinomial logit model for the latent classes equals

ηx|zi = γx0 +
R∑
r=1

γxr · zcovir .

The intercept parameters γx0 and the slope parameters γxr are subjected to
the appropriate identifying constraints; that is, either

∑K
x=1 γxr = 0, γ1r = 0,

or γKr = 0, for 0 ≤ r ≤ R.
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3.2 The Standard LC Model for Categorical Indicators

The standard LC model as described by Goodman (1974a, 1974b), Haberman
(1979), and Lazarsfeld and Henry (1968) is a LC Cluster model containing
only categorical indicators.8 An example of a LC model with three categorical
indicators (T = 3) is

P (yi1 = m1, yi2 = m2, yi3 = m3) =
K∑
x=1

P (x)
3∏
t=1

P (yit = mt|x). (7)

where

3∏
t=1

P (yit = mt|x) = P (yi1 = m1|x)P (yi2 = m2|x)P (yi3 = m3|x)

As can be seen from this probability structure, the indicators yi1, yi2,
and yi3 are assumed to be mutually independent given that one belongs to a
certain latent class. This conditional independence constraint is sometimes
referred to as the local independence assumption. Note that – using the
terminology introduced above – each of the H sets consists of a single y
variable, or equivalently H = T .

The conditional (response) probabilities P (yit = m|x) are parameterized
as follows:

P (yit = m|x) =
exp(ηtm|x)∑Mt

m′=1 exp(ηtm′|x)
,

with
ηtm|x = βtm0 + βtmx0.

If the corresponding indicator is a nominal variable, except for the identify-
ing effect or dummy coding constraints, we do not need to impose further
restrictions on the βtmx0 parameters. On the other hand, if yit is an ordinal in-
dicator, the two-variable term appearing in the logistic form of P (yit = m|x)
is restricted using the category scores yt∗m; that is,

βtmx0 = βtx0 · yt∗m.
8Textbooks and introductory papers on the standard LC model include Bartholomew

and Knott (1999), Clogg (1995), Dayton (1998), Dillon and Kumar (1994), Hagenaars
(1990, 1993), Hagenaars and McCutcheon (2002), Heinen (1996), Magidson and Vermunt
(2004), McCutcheon (1987), Shockey (1988), Vermunt (1997), and Vermunt and Magidson
(2004).
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Such a restricted association term is sometimes referred to as a row- or
column-association model, depending on whether we see the latent variable
as the row or the column variable (Agresti, 2002; Goodman, 1979). As was
explained in the previous section, this yields an adjacent-category ordinal
logit model for response variable yit.

3.3 Covariates

An important extension of the standard LC model described above is ob-
tained by the possibility of including covariates (Clogg, 1981; Dayton and
McReady, 1988; Hagenaars, 1990, 1993).9 Inclusion of covariates to pre-
dict class membership is straightforward within the general framework of the
model defined in equation (1).

Suppose we have a model with three categorical indicators and two co-
variates (zcovi1 and zcovi2 ). The LC Cluster model for this situation is

P (yi1 = m1, yi2 = m2, yi3 = m3|zcovi1 , zcovi2 ) =
K∑
x=1

P (x|zcovi1 , zcovi2 )

·
3∏
t=1

P (yit = mt|x). (8)

Note that compared to the model without covariates described in equation
(7), we replaced P (x) by P (x|zcovi1 , zcovi2 ), which makes the distribution of x
dependent on zcovi1 and zcovi2 . It is important to be aware of the fact that we
are making an additional set of conditional independence assumptions: The
indicators are assumed to be independent of the covariates given the latent
variable x.

The probability P (x|zcovi1 , zcovi2 ) is restricted by means of a multinomial
logistic regression model to exclude higher-order interaction terms, as well
as to be able to deal with numeric (ordinal, discrete interval, or continuous)
covariates. This yields

P (x|zcovi1 , zcovi2 ) =
exp(ηx|zi1,zi2)∑K

x′=1 exp(ηx′|zi1,zi2)
, (9)

with
ηx|zi1,zi2 = γx0 + γx1 zi1 + γx2 zi2.

9Other references on this topic are Dayton (1998), McCutcheon (1988, 1994), Van der
Heijden, Dessens, and Böckenholt (1996), and Vermunt (1997).
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As can be seen, the three-variable interaction is not included in the logit
model. To simplify the model, Latent GOLD always excludes higher-order
interactions between covariates from a model.10 As was explained before, for
nominal covariates, the program sets up the appropriate effects or dummies.
This means that zcovi1 and zcovi2 could also be the two effects or dummies
corresponding to a three-category nominal covariate.

We call this procedure for including covariates in a model the “active
covariates method”: Covariates are active in the sense that the LC Cluster
solution with covariates can be somewhat different from the solution without
covariates. An alternative method, labeled “inactive covariates method”, in-
volves computing descriptive measures for the association between covariates
and the latent variable after estimating a model without covariates. More de-
tail on the latter method is given in the subsection explaining the ProbMeans
output.

Another alternative is to use a three-step approach; that is, to estimate
the LC model without covariates (step 1), obtain the class assignments (step
2), and estimate the covariate effects using the assigned class memberships
(step 3). A bias adjusted step-three analysis is implemented in the Latent
GOLD Step3 submodule.

3.4 Local Dependencies

As mentioned above, the local independence assumption is the basic assump-
tion of the standard LC model. Lack of fit of a LC model is caused by viola-
tion of this assumption. The usual way to proceed is to increase the number
of classes until a model with an acceptable fit is obtained. An alternative
model fitting strategy that we would like to propagate is to relax the local
independence assumption by allowing for associations between indicators, as
well as direct effects of covariates on the indicators (Hagenaars, 1988; Ver-
munt, 1997). Latent GOLD calculates bivariate z–y and y–y residuals which
can be used to detect which pairs of observed variables are more strongly
related than can be explained by the formulated model.

As in the previous subsection, we will use an example of a LC model with
three indicators and two covariates. Suppose that we would like to relax two
local independence assumptions by assuming that yi1 and yi2 are directly

10Note that higher-order interactions can be included in a model by adding the corre-
sponding product terms to the data base and using these as additional covariates.

25



related and that yi3 is affected by zi2. This would modify the right-hand side
of equation (8) as follows:

K∑
x=1

P (x|zcovi1 , zcovi2 )P (yi1 = m1, yi2 = m2|x)P (yi3 = m3|x, zcovi2 ).

The dependent variables yi1 and yi2 now serve as a joint dependent variable
and yi3 is allowed to depend on zcovi2 . The logit model for P (x|zcovi1 , zcovi2 ) is the
same as above. The linear term in the logit model for P (yi1 = m1, yi2 = m2|x)
equals

η12
m1m2|x = β1

m10 + β1
m1x0 + β2

m20 + β2
m2x0 + β12

m1m2
,

and, the term for P (yi3 = m3|x, zcovi2 ) equals

η3
m3|x,zi2 = β3

m30 + β3
m3x0 + β3

m32 z
cov
i2 .

These linear terms are used again to exclude higher-order interactions from
the model, as well as to use the information on the scale type of the variables.

Latent GOLD starts by setting up a probability structure corresponding
to a local independence model, such as those described in equations (7) and
(8). When users include local dependencies using information on bivariate
residuals, the program automatically sets up the correct and most parsimo-
nious probability structure for the situation concerned.

3.5 Finite Mixture Models for Continuous Response
Variables

The Cluster submodule can not only be used to specify cluster-type models
for categorical indicators, but also to estimate models with continuous indi-
cators (Vermunt and Magidson, 2002). The basic structure of a LC Cluster
model for continuous y variables is:11

f(yi) =
K∑
x=1

P (x) f(yi|x),

where different variants can be obtained by means of the specification of
f(yi|x). The least restrictive model is obtained by assuming that the y’s
come from class-specific multivariate normal distributions

f(yi|x) = (2π)−Km/2 |Σx|−1/2 exp
{
−1

2
(yi − µx)

′Σ−1
x (yi − µx)

}
11Note that we dropped the index h because all variables belong to the same set (H = 1).
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This model is also known as an unrestricted FM of multivariate normals
(Banfield and Raftery, 1993; McLachlan and Basford, 1988; McLachlan and
Peel, 2000; Wolfe, 1970). As can be seen, each latent class (or mixture
component) has its own set of means µx and its own variance-covariance
matrix Σx.

Specification of more restricted models for continuous y variables typically
involves fixing some off-diagonal elements of the covariance matrix to zero.
The most restrictive model assumes that all covariances equal zero, which
is equivalent to the local independence assumption. This model can also be
written as

f(yi) =
K∑
x=1

P (x)
T∏
t=1

f(yit|x), (10)

with

f(yit|x) =
1√

2πσ2
t,x

exp

{
−1

2

(yit − µt,x)2

σ2
t,x

}
.

Note that the probability structure in equation (10) is similar to the one of
the standard LC model for categorical variables described in equation (7).

Intermediate models are be obtained by setting some but not all off-
diagonal elements of the Σx matrices to zero, yielding specifications in which
some pairs of indicators are mutually independent within classes whereas
others are not. As was explained in Section 2, in such situations, we will
work with sets of y variables, where indicators belonging to different sets
are assumed to be locally independent and indicators belonging to the same
set may be correlated. As with categorical y variables, the default is the
local independence model described in equation (10). Users can include local
dependencies one by one, and the program subsequently sets up the correct
and most parsimonious probability structure.

An important issue in the specification of mixtures of normal distribu-
tions is whether to work with Cluster-dependent or Cluster-independent error
variances and covariances. So far, we assumed that the error variances and
covariances were Cluster dependent. However, when the number of y vari-
ables and/or number of latent classes is large, this may yield models that
have many parameters to be estimated. By replacing σ2

t,x by σ2
t or Σx by

Σ in the above formulas, one obtains more parsimonious structures with
Cluster-independent variances and covariances. It is also possible to allow
only the variances to differ across Clusters, but assume that the covariances
are the same for all Clusters.

27



Finally, as in LC Cluster models for categorical variables, it is possible to
include covariates as predictors of class membership in mixtures of normals.
Covariates can not only influence class membership, but can also have direct
effects on the Cluster-specific means. The most general finite mixture of
multivariate normals with covariates is defined in equation (6), with Cluster-
specific densities of the form described in equation (3).

3.6 LC Cluster Models for Mixed Mode Data

The most general LC Cluster model is the model for mixed mode data
(Everitt, 1988; Hunt and Jorgensen, 1999; Lawrence and Krzanowski, 1996;
Moustaki, 1996; Vermunt and Magidson, 2002). This model is used when
one has y variables of different scale types. The structure that serves as the
starting point is again the local independence structure that we also used
for categorical and continuous variables (see equation 5). For each indicator,
the user has to specify whether it is nominal, ordinal, continuous, or a count.
As in the above models for categorical and continuous indicators, it is possi-
ble to include covariates in LC Cluster models for mixed mode data. These
covariates can also have direct effects on the various types of indicators.

Local dependencies between pairs of categorical (nominal or ordinal) vari-
ables and between pairs of continuous variables are dealt with in the same
way as discussed above; that is, via joint multinomial and multivariate nor-
mal distributions. Currently, there is no option for including other kinds of
y–y association. There is, however, an indirect method (a trick) to specify a
local dependency between, for instance, a categorical indicator, say yi1, and
a continuous indicator, say yi2 (Vermunt and Magidson, 2002). This can be
accomplished by duplicating the categorical indicator and using it both as a
covariate and as an indicator in the model of interest. The local dependency
is obtained by specifying that the “covariate yi1” has a direct effect on yi2,
but does not affect the latent variable x. This yields the conditional Gaussian
distribution for yi2 proposed by Hunt and Jorgensen (1999). In this way, one
can specify direct effects of continuous on categorical and count indicators, of
categorical on continuous and count indicators, and of counts on categorical,
continuous and other count indicators.
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3.7 Parameter Restrictions in Cluster Models

Several types of restrictions can be imposed on the parameters of a LC Cluster
model. These are:

• Equal x–y effects across indicators of the same scale type. In the exam-
ple with three nominal indicators described above, assuming that the
three indicators have same numbers of categories, this constraint would
imply that β1

mx0 = β2
mx0 = β3

mx0. This restriction is especially useful
in scaling and IRT-like applications. With dichotomous indicators, for
example, it yields a LC or nonparametric Rasch model and with ordinal
indicators a LC or nonparametric partial-credit model (Heinen, 1996;
Vermunt, 2001).

• Order-restricted Clusters. With this constraint, cluster-specific item
probabilities and means will be restricted to be monotonically increas-
ing. It yields what is usually referred to as ordinal LC analysis (Croon,
1990, 2002; Vermunt, 2001). For indicators which are specified to be
ordinal, continuous, or counts, the order-restricted-clusters constraint
implies the following inequality on the regression parameters: βtx0 ≤
βtx+1,0, for 1 ≤ x ≤ K − 1. In other words, the parameter corre-
sponding to class x + 1 should be at least as large as the parameter
corresponding to class x. With nominal indicators the constraint is
on the adjacent-category logits βtm+1,x0 − βtmx0. More precisely, the in-
equality βtmt+1,x0 − βtmtx0 ≤ βtmt+1,x0 − βtmtx+1,0, for 1 ≤ x ≤ K − 1 and
1 ≤ mt ≤ Mt − 1, yields Croon’s ordinal LC model, which is strongly
connected to nonparametric IRT (see Vermunt, 2001).12

• Exclude certain x–y and z–x effects. The possibility to equate such an
effect to zero can be used to test its significance using a likelihood-ratio
test.

• Cluster independent variances/covariances. Variances of and covari-
ances between continuous response variables can be restricted to be
equal across Clusters, yielding a simpler model-based clustering model.

12In Croon’s original formulation, the inequality restrictions were imposed on cumulative
logits rather than on adjacent-category logits (see Vermunt 2001 for the various variants).
In the dichotomous case, the two are, of course, equivalent.
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• The cluster-specific error variances of the continuous response variables
are restricted to be at least 1.0e-6 times the observed variances in the
sample.

4 DFactor Models

The LC DFactor model implemented in Latent GOLD is a model with:

1. L dichotomous/ordinal latent variables called discrete factors (DFac-
tors), which may be assumed to be mutually dependent or independent,

2. T response variables yit (indicators) that can be nominal, ordinal, con-
tinuous, and/or counts,

3. certain DFactor-indicator effects (“loadings”) restricted to zero,

4. R numeric and nominal covariates zcovir affecting the x`,

5. direct relationships between indicators and/or direct effects of covari-
ates on indicators.

The main difference between a DFactor and a LC Cluster model is that the
former may contain more than one latent variable. Another difference is that
in the DFactor model the categories of the latent variables are assumed to
be ordered. Thus, rather than working with a single nominal latent variable,
here we work with one or more dichotomous or ordered polytomous latent
variables (Magidson and Vermunt, 2001; Vermunt and Magidson, 2005a).
The advantage of this approach is that it guarantees that each of the DFactors
is one-dimensional.

The primary difference between our LC DFactor model and the tradi-
tional factor-analytic model is that the latent variables (DFactors) are as-
sumed to be dichotomous or ordinal as opposed to continuous and normally
distributed. Because of the strong similarity with traditional factor analysis,
we call this approach LC DFactor analysis. There is also a strong connection
between DFactor models and IRT or latent trait models. Actually, DFactor
models are discretized variants of well-known latent trait models for dichoto-
mous and polytomous items (Heinen, 1996; Vermunt, 2001; Vermunt and
Magidson, 2005a). 13

13Two edited volumes paying special attention to the relationship between latent trait
and LC models are Langeheine and Rost (1988) and Rost and Langeheine (1997).
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As in maximum likelihood factor analysis, modeling under the LC DFac-
tor approach can proceed by increasing the number of discrete factors until
a good fitting model is achieved. This approach to LC modeling provides
a general alternative to the traditional method of obtaining a good fitting
model by increasing the number of latent classes. In particular, when work-
ing with dichotomous uncorrelated DFactors, there is an exact equivalence
in the number of parameters of the two models. A DFactor model with 1
discrete factor has the same number of parameters as a 2-class LC Cluster
model, a model with 2 discrete factors as a 3-class model, a model with 3
discrete factors as a 4-class model, etc. Thus, in an exploratory analysis,
rather than increasing the number of classes one may instead increase the
number of DFactors until an acceptable fit is obtained.

4.1 Probability Structure and Linear Predictors

The most general probability structure one can use in a DFactor analysis
with L discrete factors is

f(yi|zcovi ) =
K1∑
x1=1

K2∑
x2=1

. . .
KL∑
xL=1

P (x1, x2, . . . , xL|zcovi )

·
H∏
h=1

f(yih|x1, x2, . . . , xL, z
cov
i ).

The similarity of this equation with the LC Cluster model described in equa-
tion (6) becomes clearer by noting that the joint latent variable x1, x2, . . . , xL
can also be considered to be a single latent variable with K =

∏L
`=1K` cate-

gories. A 3-DFactor model with 2 levels per DFactor, for example, is in fact
a restricted 8-Cluster model. Note that as Cluster models, DFactor models
may contain direct effects between indicators and direct effects of covariates
on indicators.

Because of the similarity between the linear predictors in LC DFactor
models to those in Cluster models, it is not necessary to provide again the
detailed formulas of the various linear predictors. Instead we concentrate on
the three main differences:

1. In an L-DFactor model there is not one but L terms describing the
relationship between the latent variables and the indicators/covariates.
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2. DFactors are not nominal but ordinal variables, and are handled in a
manner similar to ordinal indicators: Equal distance scores between 0
and 1 are assigned to the K` categories of DFactor `. With K` = 3,
for example, the scores would be x`∗1 = 0 , x`∗2 = 0.5, and x`∗3 = 1, for
categories 1, 2, and 3, respectively. As is shown below, these scores are
used to restrict the effect parameters involving a DFactor.

3. Because there is more that one latent variable, the model specification
also involves the associations between these discrete latent factors.

To illustrate the impact of the first two differences, let us have a look at
the linear term for continuous indicators and counts, which equals

ηtx,zi = βt0 +
L∑
`=1

βt`0 · x`∗x` +
R∑
r=1

βtr · zcovir ,

where βt`0 is the effect of DFactor x` on indicator yit. It can easily be seen that
there is a separate βt`0 term for each DFactor and that the numeric category
scores x`∗x` appear in the regression equation. Whereas for ordinal indicators
the term βt`0 has the same form as for continuous indicators and counts, for
nominal indicators it becomes βtmt`0, where the extra index mt refers to the
category of yit.

The linear term in the regression model for the DFactors equals

ηx|zi =
L∑
`=1

γ`x`0 +
L∑
`=1

R∑
r=1

γ`·r · x`∗x` · z
cov
ir +

L∑
`=1

`−1∑
`′=1

γ``
′

·· · x`∗x` · x
`′∗
x`′
,

where γ`x`0 are the intercept terms and γ`·r the covariate effects for DFactor `,

and γ``
′

is the parameter capturing the association between discrete factors
` and `′. Note that this is a multivariate variant of the adjacent-category
ordinal logit model.

4.2 A Two-DFactor Model for Nominal Indicators

To illustrate the DFactor model, let us assume that we have a two-DFactor
model for three nominal indicators. The corresponding probability structure
is of the form

P (yi1 = m1, yi2 = m2, yi3 = m3) =
K∑
x=1

P (x1, x2)
3∏
t=1

P (yit = mt|x1, x2).
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The conditional response probabilities P (yit = mt|x1, x2) are restricted by
means of logit models with linear terms

ηtm|x1,x2 = βtm0 + βtm10 · x1∗
x1

+ βtm20 · x2∗
x2
.

As can be seen, two-variable terms are restricted using the category scores x`∗x`
and higher-order interaction terms are excluded from the model. As a results
of these two types of constraints, the parameters describing the strength of
relationships between the DFactors and the indicators – here, βtm10 and βtm20

– can be interpreted as factor loadings.
In the standard DFactor model, the discrete factors are specified to be

dichotomous, which means that the row-association structures are not real
constraints. An important extension of this standard model is that the num-
ber of levels of a DFactor can be increased, which makes it possible to describe
the distribution of the underlying factor more precisely. Note that the levels
of the DFactors remain ordered by the use of fixed equal-interval category
scores in their relationships with the indicators.14 Because of this parameter-
ization, each additional level costs only one degree of freedom; that is, there
is one additional class size to be estimated.

In the default setting, the discrete factors are assumed to independent
of one another. This is specified by the appropriate logit constraints on the
latent probabilities. In the two-DFactor case, this involves restricting the
linear term in the logit model for P (x1, x2) by

ηx1,x2 = γ1
x10 + γ2

x20.

Working with correlated DFactors is comparable to performing an oblique
rotation. The association between each pair of discrete factors is described
by a single uniform association parameter:

ηx1,x2 = γ1
x10 + γ2

x20 + γ12
·· · x1∗

x1
· x2∗

x2
.

It should be noted that contrary to traditional factor analysis, the LC DFac-
tor model is identified without additional constraints, such as setting certain
DFactor loadings equal to zero.15 Nevertheless, it is possible to specify mod-
els in which DFactor loadings are fixed to zero. Together with the possibility

14Several authors have described such a scoring of latent classes. See, for instance, Clogg
(1988), Formann (1992), Formann and Kolhmann (1998), Heinen (1996), Uebersax (1993,
1997), and Vermunt (2001).

15Of course, this is only true if there are sufficient indicators compared to the number
of DFactors.
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to include DFactor correlation in the model, this option can be used for a
confirmatory factor analysis.

4.3 Other Possibilities

Above we presented a two-DFactor model for nominal categorical variables.
We discussed several important extensions of the standard model, such as
increasing the number of categories of the latent variables, assuming discrete
factors to be correlated, and setting DFactor loadings equal to zero.

Other extended possibilities are similar to what we discussed in the con-
text of the LC Cluster model. Indicators can not only be nominal but also
ordinal, continuous, or counts. In addition, as in the Cluster models described
in the previous section, one can specify models with local dependencies, as
well as models with nominal and numeric covariates.

4.4 Parameter Restrictions in DFactor Models

Several types of restrictions can be imposed on the parameters of a DFactor
model. These are:

• Equal x`–y effects for DFactor ` across indicators of the same type.
In the example of a two-DFactor model with three nominal indicators,
this constraint would, for example, imply that β1

m10 = β2
m10 = β3

m10 for
the first DFactor. This restriction is especially useful in scaling and
IRT-like applications. With dichotomous indicators it yields a semi-
parametric Rasch model and with ordinal indicators a semi-parametric
partial-credit model (Heinen, 1996; Vermunt, 2001).

• Excluding certain x`–y and z–x` effects from the model. The option to
exclude certain x`–y terms makes it possible to indicate that discrete
factor ` is related to some but not all indicators, which is required in
confirmatory models. Excluding a term can also be used to test its
significance using a likelihood-ratio test.

• Include/Exclude DFactor-DFactor associations (default=exclude). As-
sociations between discrete factors can either be included or excluded.
As in standard factor analysis, one will typically exclude these DFactor-
DFactor associations in an exploratory analysis, but include them in a
confimatory analysis.

34



• The error variances of continuous indicators are restricted to equal at
least 1.0e-6 times the observed variances in the sample.

5 Latent Class Regression Models

The LC or FM Regression model implemented in Latent GOLD is a model
with:16

1. a single nominal latent variable x,

2. Ti replications or repeated observations of a single dependent variable
yit, which may be nominal, ordinal, continuous, or a binomial or Poisson
count,

3. Q numeric or nominal predictors zpreditq affecting yit via a GLM, where
parameters may differ across latent classes,

4. zero, equality, fixed value, and order restrictions on regression coeffi-
cients,

5. R numeric or nominal covariates zcovir affecting x.

The main difference between LC Regression analysis and the other forms
of LC analysis implemented in Latent GOLD is that it contains a single de-
pendent variable, which may, however, be observed more than once for each
case. These multiple responses may be experimental replications, repeated
measurements at different time points or occasions, clustered observations,
responses on a set of questionnaire items, or other types of dependent ob-
servations. The value of the dependent variable for case i at replication t
is denoted by yit, and its total number of replications by Ti. Note that the
index i in Ti makes it possible to deal with unequal numbers of observations
per case.

In the context of LC Regression analysis, it makes sense to make a dis-
tinction between two types of exogenous variables:

1. variables influencing the latent variable, which we call covariates,

16References to LC or FM Regression analysis are Agresti (2002, section 13.2), Vermunt
and Van Dijk (2001), Wedel and DeSarbo (1994), and Wedel and Kamakura (1998).
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2. variables influencing the dependent variable, which we call predictors.

Covariates will be denoted by zcovir and predictors by zpreditq , where the index

t in zpreditq reflects that the value of a predictor may change across replications.
A covariate, on the other hand, has the same value across all replications of
a particular case.

Note that, in fact, we are dealing with a two-level data set, where t in-
dexes the lower-level observations within higher-level observation i. Covari-
ates serve as higher-level exogenous variables and predictors as lower-level
exogenous variables. This illustrates that Latent GOLD can be used to esti-
mate (nonparametric) two-level or random-coefficient models (Aitkin, 1999;
Skrondal and Rabe-Hesketh, 2004). Using t as an index for time points
or time intervals, one obtains nonparametric random-coefficients models for
longitudinal data, such growth data, event history data, and panel models
with (Vermunt, 1997, 2002a, 2007; Vermunt and Van Dijk, 2002; Wedel et
al., 1995; Zackin, De Gruttola, and Laird, 1996).

5.1 Probability Structure and Linear Predictors

The most general probability structure that can be used in the Regression
submodule takes on the following form:

f(yi|zcovi , zpredi ) =
K∑
x=1

P (x|zcovi )
Ti∏
t=1

f(yit|x,zpredit ) . (11)

The main differences from the Cluster submodule (see equation 6) are that in
Regression we make a distinction between covariates and predictors, we allow
for different numbers of replications per case, we assume that the conditional
densities f(yit|x,zpredit ) have the same form for each t, and we do not allow
for direct effects between the multiple responses.

In Latent GOLD’s Regression submodule, it is possible to specify a repli-
cation weight vit for each of the records of case i. This modifies the definition
of f(yi|zcovi , zpredi ) somewhat:

f(yi|zcovi , zpredi ) =
K∑
x=1

P (x|zcovi )
Ti∏
t=1

{
f(yit|x,zpredit )

}vit
. (12)

Two possible applications of replication weights include grouping of records
and differential weighting of responses. Another possible application is the
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analysis of multinomial counts. With an M -category multinomial count re-
sponse variable, one would get M records for each case with responses equal
to 1, 2, 3, ...,M , respectively, and replication weights equal to the number of
times the category concerned was selected.

Another slight modification of the probability structure defined in equa-
tion (11) occurs with the zero-inflated option. Depending on the scale type,
the model is expanded with either one or M latent classes that are assumed
to give a particular response with probability one. Zero-inflated Poisson and
binomial count models are obtained by adding a single latent class to the
model, yielding a model with K + 1 Classes. Class K + 1 has a zero Poisson
rate or zero binomial probability, or, equivalently, a probability of one of
having zero events; that is, P (yit = 0|x,zpredit ) = 1 for x = K + 1. The same
happens in the case of a continuous dependent variable with the additional
modification that the dependent variable is assumed to be censored-normal
distributed in the other K Classes. This model is sometimes referred to a
censored-inflated linear regression model. For ordinal and nominal depen-
dent variables, M Classes are added to the model, each of which responds
with probability one to a certain category; that is, P (yit = m|x,zpredit ) = 1
for x = K + m. Such Classes are sometimes referred to a stayer Classes (in
mover-stayer models) or brand-loyal Classes (in brand-loyalty models).

Because the linear predictor in P (x|zcovi ) has the same form as in LC
Cluster models (see equation 9), we will pay no further attention to it here.
The other two linear predictors of interest – ηx,zit and ηm|x,zit – require more
explanation because these have a specific form in LC Regression models. For
continuous and count responses, we use

ηx,zit = βx0 +
Q∑
q=1

βxq · zpreditq ,

where βx0 is a Class-specific intercept and βxq the Class-specific regression
coefficient corresponding to predictor number q. Depending on the scale type
of the response variable, this yields either a standard linear, log-linear Pois-
son, or binary logistic regression model with parameters that differ across
latent classes. The above linear term differs from the one used in LC Clus-
ter models in that all parameters can vary between Classes and no further
restrictions are needed for identification. Another important difference is
that neither η or β has an index t, which implies that parameters do not
differ across repeated responses. Differences in predicted values between the
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multiple responses can thus only be the result of varying predictor values.17

For nominal responses, we use a multinomial logit model having a linear
predictor of the form

ηm|x,zit = βxm0 +
Q∑
q=1

βxmq · zpreditq ,

with – depending on the selected coding type for nominal variables – the
identification restrictions

∑M
m=1 βxmq = 0, βx1q = 0, or βxMq = 0, for 0 ≤ q ≤

Q. An ordinal response variable is modeled with an adjacent-category logit
model in which

ηm|x,zit = βxm0 +
Q∑
q=1

βx·q · y∗m · z
pred
itq .

Here, y∗m is the score assigned to category m of the response variable. In the
ordinal case, we need only an identifying effect or dummy constraints for the
intercept term βxm0.

5.2 Some Special Cases

The simplest probability structure for a LC “Regression” model occurs if
there is a single response per case and no predictors; that is,

f(yi) =
K∑
x=1

P (x)f(yi|x) .

This yields a simple univariate finite mixture model in which the mean and
possibly also the variance of the distribution of yi is assumed to be Class-
dependent. Such a model without predictors makes it possible to describe
the unobserved heterogeneity with respect to the distribution of yi in the
population under study.18

A more useful LC Regression model is obtained by including predictors
in the model, such as,

f(yi|zpredi1 , zpredi2 ) =
K∑
x=1

P (x)f(yi|x, zpredi1 , zpredi2 ) .

17By defining an independent variable “replication number” or “time”, as well as the
necessary product terms, one can make parameters replication or time dependent.

18Relevant references on this topic are Böhning (2000), Dillon and Kumar (1994), Everitt
and Hand (1981), Laird (1978), McLachlan and Basford (1988), McLachlan and Peel
(2000), Magidson and Vermunt (2003a), and Titterington, Smith, and Makov (1985).
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Here, f(yi|x, zpredi1 , zpredi2 ) denotes the distribution of the dependent variable
y given a person’s class membership x and predictor values zpredi1 and zpredi2 .
Depending on the type of dependent variable, the expected value of the
appropriate distribution is restricted by means of a logistic, log-linear, or
linear regression model.19

An important extension of the above LC Regression model is obtained by
making class membership dependent on covariates (Kamakura, Wedel, and
Agrawal, 1994; Vermunt, 1997). An example of such a model is:

f(yi|zcovci1 zcovi2 , zpredi1 , zpredi2 ) =
K∑
x=1

P (x|zcovi1 , zcovi2 )f(yi|x, zpredi1 , zpredi2 )

In this model, it is assumed that the probability of belonging to latent class
x depends on the values of zcovi1 and zcovi2 . This is equivalent to the way
covariates can be used in LC Cluster models.

As already mentioned above, there may be more than one observation per
case; that is, there may be more than one replication of the same dependent
and independent variables for each observational unit. Extending the above
model to multiple replications yields the following probability structure:

f(yi|zcovi1 , zcovi2 , zpredi1 , zpredi2 ) =
K∑
x=1

P (x|zcovi1 , zcovi2 )
Ti∏
t=1

f(yit|x, zpredit1 , zpredit2 ) .

Such a LC Regression model for repeated measures is very similar to
multilevel (two-level), mixed, or random-coefficients models, in which random
effects are included to deal with the dependent observations problem. The LC
Regression model is, in fact, a nonparametric random-effects model (Agresti,
2002, section 13.2; Aitkin, 1999; Skrondal and Rabe-Hesketh, 2004; Vermunt
and Van Dijk, 2001).

5.3 Restrictions for the Class-Specific Regression Co-
efficients

Various types of restrictions can be imposed on the Class-specific regression
coefficients: intercepts and predictor effects can be fixed to zero, restricted to

19For some applications, see Böckenholt (1993), Land, McCall and Nagin (1996), Mare
(1994), and Wedel and DeSarbo (1994).
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be equal across certain or all Classes, and constrained to be ordered. More-
over, the effects of numeric predictors can be fixed to one. These constraints
can either be used as a priori restrictions derived from theory or as post hoc
restrictions on estimated models.

Certain restrictions apply to parameters within each Class, while others
apply across Classes. The within-Class restrictions are:

• No Effect: the specified effect(s) are set to zero selected latent classes;

• Offset: the selected effect(s) are set to one, thus serving as an offset.20

The offset effect applies to numeric predictors only, and only with or-
dinal, continuous, Poisson count, and binomial count responses (thus
not with a nominal dependent variable).

Between-Class restrictions are:

• Merge Effects: the intercept or the effect a selected predictor is equated
across 2 or more specified Classes;

• Class Independent: the intercept or the effects of a selected predictor
is equated across all Classes;

• Order Restriction (ascending or descending): in each Class, the effect
of a selected numeric predictor is assumed to have the same sign or
the effects corresponding to a selected nominal predictor are assumed
to be ordered (either ascending or descending). That is, for numeric
predictors, the ascending restriction implies that the Class-specific co-
efficients should be at least zero (β ≥ 0) and the descending restriction
that they are at most zero (β ≤ 0). For nominal predictors, ascending
implies that the coefficient of category p+1 is larger than or equal to the
one of category p (βp ≤ βp+1, for each p) and descending that the coef-
ficient of category p+ 1 is smaller than or equal to the one of category
p (βp ≥ βp+1, for each p). Similarly to what was explained in the con-
text of the order-restricted Cluster model, with a nominal dependent

20The term offset stems from the generalized linear modeling framework. It refers to
a regression coefficient that is fixed to 1, or equivalently, to a component that offsets the
linear part of the regression model by a fixed amount. An offset provides the same role as
a cell weight in log-linear an logit analysis. In log-linear and logit model, an offset is, in
fact, the log of a cell weight.
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variable, the imposed order restriction applies to each of the adjacent
category logits. In the case of ascending, this implies βm+1 − βm ≥ 0
for numeric predictors and βm+1,p−βp ≤ βm+1,p+1−βm,p+1 for nominal
predictors (see Galindo and Vermunt, 2005; Vermunt, 1999; Vermunt
and Hagenaars, 2004).

• The Class-specific error variances of a continuous dependent variable
are restricted to be at least 1.0e-6 times the observed variance in the
sample.

The “Class Independent” option can be used to specify models in which some
coefficients differ across Classes while others do not. This can either be on a
priori grounds or can be based on the test statistics from previously estimated
models. More specifically, if the Wald(=) test is not significant, it makes
sense to check whether an effect can be assumed to be Class independent.

There is a special variant of the Class-independent option called “No
Simple” that can be used in conjunction with the intercept in an ordinal
regression model. With this option, the intercept is modeled as βxm0 = β·m0+
βx·0 · y∗m, where βx·0 is subjected to an effect or dummy coding constraint.
This specification of a Class-specific intercept is much more parsimonious and
is, in fact, equivalent to how x-y relationships with ordinal y’s are modeled
in LC Cluster models. Rather that estimating K ·M intercept terms, one
now estimates only M +K − 1 coefficients; that is, one extra coefficient per
extra latent class.

“Order Restrictions” are important if one has a priori knowledge about
the sign of an effect. For example, the effect of price on persons’ prefer-
ences is usually assumed to be negative – or better, non-positive – for each
latent class (segment). If the price effect is specified to be “Descending”,
the resulting parameter estimate(s) will be constrained to be in agreement
with this assumption. Another application of order restrictions occurs in
growth modeling. Rather than assuming a specific functional form for the
time dependence, one may wish to make the much less restrictive assumption
that the time effect is monotonic (see, for example, Vermunt and Hagenaars,
2004).

The “No Effect” option makes it possible to specify a different regression
equation for each latent class. More specifically, each latent class may have
different sets of predictors affecting the responses. Post hoc constraints can
be based on the reported z value for each of the coefficients. An example of
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an a priori use of this constraint is the inclusion of a random-responder class,
a latent class in which all coefficient are zero, except for the intercept. This
is specified as follows:

Intercept
Predictor1
Predictor2

Class 1 Class 2 Class 3 Class 4
1 2 3 4
− 2 3 4
− 2 3 4

,

where “−” indicates that the effect is equal to 0. In this example, Class 1 is
the random-responder class.

“Merge Effects” is a much more flexible variant of “Class Independent”.
It can be use to equate the parameters for any set of latent classes. Besides
post hoc constraints, very sophisticated a priori constraints can be imposed
with this option. An important application is the specification of DFactor-
like structures in which each latent class corresponds to the categories of two
or more latent variables. For example, consider a set of constraints of the
form:

Intercept
Predictor1
Predictor2

Class 1 Class 2 Class 3 Class 4
1 1 3 3
1 2 1 2
1 2 1 2

,

where the numbers in the cells indicate ”equal to Class #”. This restricted
4-Class model is in fact a 2-dimensional DFactor model: the categories of
DFactor 1 differ with respect to the intercept and the categories of DFactor
2 with respect to the two predictor effects. Specifically, level 1 of DFactor
1 is formed by Classes 1 and 2 and level 2 by Classes 3 and 4; level 1 of
DFactor 2 is formed by Classes 1 and 3 and level 2 by Classes 2 and 4.

The option “Offset” can be used to specify any nonzero fixed-value con-
straint on the Class-specific effect of a numeric predictor in models for ordinal,
continuous and count responses. This means that it is possible to refine the
definition of any Class (segment) by enhancing or reducing the estimated nu-
meric predictor effect for that Class. Recall that numeric predictor q enters
as βxq · zpreditq in the linear term of the regression model. Suppose, that after
estimating the model, the estimate for βxq turned out to be 1.5 for Class 1. If

zpreditq is specified to be an offset, the effect of this predictor would be reduced
(1.5 would be reduced to 1) for this Class. But suppose that you wish to
enhance the importance of this predictor for Class 1; say, you wish to restrict
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βxq to be equal to 2. The trick is to recode the predictor, replacing each code

by twice the value. Thus, the recoded predictor is defined as 2 · zpreditq . If we

restrict the effect of this recoded predictor to 1, we obtain 1 · 2 · zpreditq , which

shows that the effect of zpreditq is equated to 2. Such recoding can be done
easily within Latent GOLD, using the Replace option.

In addition to post hoc refinements to customize the definition of the
resulting Classes, the offset restriction can also be used to make the latent
classes conform to various theoretical structures. Probably the most impor-
tant a priori application of “Offset” is the possibility of defining zero-inflated
models for counts, which can also be specified with the special zero-inflated
option discussed above. These are models containing one latent class that
has a Poisson rate (binomial probability) equal to 0 and that is not affected
by the other predictors. An example of a restrictions table corresponding to
such a structure is:

Intercept
LargeNegative(-100)
Predictor1
Predictor2

Class 1 Class 2 Class 3
− 2 3
∗ − −
− 2 3
− 2 3

.

Here, “−” means no effect and “∗” means offset. As can be seen, Class 1
is only affected by an offset, and Classes 2 and 3 have there own intercept
and predictor effects. The numeric “predictor” LargeNegative(-100) takes
on the value -100 for all records.21 As a result of the fixed effect of -100,
the rate/probability of experiencing an event will be equal to zero. In the
case of a Poisson count, the rate for someone belonging to Class 1 equals
exp(−100) = 0. In the binomial case, the probability that someone belonging
to Class 1 experiences an event is exp(−100)/[1 + exp(−100)] = 0.

Now, we will discusses several more advanced applications of the restric-
tion options. Suppose you assume that the effect of price is linear and neg-
ative (descending) for Classes 1-3 and unrestricted for Class 4. This can be
accomplished by having two copies of the price variable in the model, say

21It is not necessary to assume that the -100 appears in all records. The value could
also be -100 if a particular condition is fulfilled – for example, if the price of the evaluated
product is larger than a certain amount – and 0 otherwise. This shows that the offset option
provides a much more flexible way of specifying classes with zero response probabilities
than the zero-inflated option.
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Price1 and Price2. The effect of Price1 (numeric) is specified as ordered and
is fixed to zero in Class 4. The effect of Price2 is fixed to zero in Classes 1-3.
Similar tricks can be applied in LC growth models, in which one may wish
to allow for a different type of time effect in each of the latent classes: for
example, quadratic (time and time squared, both numeric) in Class 1, linear
(time numeric) ascending in Class 2, unrestricted (time nominal) in Class 3,
and no time effect in Class 4.

Suppose your assumption is that the effect of a particular predictor is
at least 2. This can be accomplished by combining a fixed value constraint
with an order constraint. More precisely, an additional predictor defined as
2 ·zpreditq is specified to be an offset and the effect of the original predictor zpreditq

defined to be ascending.
Our final example is an exploratory variant of the DFactor structure de-

scribed above. Suppose you want a two-DFactor model without assumptions
on which discrete factor influences which predictor effects. This can be ac-
complished having 3 copies of all predictors plus and two extra intercepts
(column with ones) in the data file. With two predictors (time and price),
the restriction table is of the following form. The first copy (Intercept, Time1,
and Price1) defines a main effect for each predictor. The second copy (In-
tercept2, Time2 and Price2) is used to define the first DFactor, a contrast
between Classes 3/4 and 1/2. The third copy (Intercept3, Time3, and Price3)
specifies DFactor 2 by means of a contrast between Classes 2/4 and 1/3.

6 Step-Three Analysis and Scoring

Latent GOLD 5.1 Basic contains a fourth submodule called Step3, which
can be used for performing a bias-adjusted step-three analysis and for ob-
taining a scoring equation. We will first discuss three-step LC analysis and
subsequently the scoring implementation.

6.1 Bias-Adjusted Step-Three Analysis

Three-step LC analysis means that the analysis of interest is performed using
the following three steps:

1. A LC model is built for a set of response variables. This involves
decisions regarding the indicators to be used, the number of classes
needed, and other model features.
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2. Using the final model from step 1, subjects are assigned to latent classes
based on their posterior class membership probabilities P (x|yi), and
the class assignments are appended to the data file. Class assignment
can be modal (to the class for which the posterior membership proba-
bility is largest) or proportional (to each class with a weight equal to
the posterior membership probability for that class).

3. Using the assigned class memberships from step 2, the association be-
tween the class membership and external variables is investigated with
simple cross-tabulations or ANOVAs, or with a multinomial logistic
regression analysis. The external variables may be either predictors of
class membership or (distal) outcomes influenced by class membership.

Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-
step approach underestimates the associations between external variables
and class membership. They proposed resolving this problem by means of
a specific correction method which involves modifying the third step. La-
tent GOLD 5.1 implements a generalized version of the adjustment method
proposed by Bolck, Croon, and Hagenaars (2004), which we refer to as the
BCH method (see Vermunt, 2010), as well as a second, conceptually simpler,
adjustment method proposed by Vermunt (2010), which we refer to as the
ML (maximum likelihood) method (see also Gudicha and Vermunt, 2013,
and Bakk, Tekle, and Vermunt, 2013).

Let ai denote the assigned class membership from step 2, x the true class
membership from step 1, and zi a set of covariates that one would like to
use to predict x (Step3-Covariate option). Bolck et al. (2004) derived how
the probability of interest, P (x|zi), is related to the probability that we can
model using the class assignments, P (ai|zi); that is,

P (ai|zi) =
K∑
x=1

P (x|zi)P (ai|x). (13)

Note that this equation is in fact a LC model (with covariates) in which ai
serves as the single indicator of x, with conditional “response” probabilities
P (ai|x). The latter represent the probability of being assigned to class ai
given that one belongs to class x. Note also that the P (ai|x) are, in fact,
the entries of the Classification Table reported as part of the Classification
Statistics, but rescaled to sum to 1 within rows (transformed to row propor-
tions). The exact form of P (ai|x) depends on whether modal or proportional
class assignment is used.
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A similar equation can be set up for the situation in which the external
variable is an outcome variable oi (Step3-Dependent option); that is,

P (ai, oi) =
K∑
x=1

P (x)P (oi|x)P (ai|x). (14)

This is a LC model with two indicators, the outcome variable oi and the class
assignments ai. It should be noted that when selecting multiple dependent
variables, a separate LC model will be set up or each dependent variable.
The reason for this is that a Step3-Dependent analysis estimates the bivariate
association between the classes and the outcome variable concerned.

The ML adjustment method involves estimating the LC model concerned
by standard maximum likelihood. That is, it estimates the LC model in
which P (x|zi) is estimated freely with P (ai|x) fixed, or the LC model in
which P (oi|x) is estimated freely with both P (x) and P (ai|x) fixed. The
quantities P (x) and P (ai|x) are computed using the posterior class mem-
bership probabilities from step 2. When using proportional assignment, the
ML adjusted step-three analysis requires expanding the data set to contain
K records per individual with weights equal to the posterior membership
probabilities. Because of this weighting, robust standard errors should be
used (Bakk, Oberski, Vermunt, 2014).

In the BCH adjustment, instead of estimating a LC model, one performs
the logistic regression analysis or the computation of the cross-tabulations
or ANOVAs in the usual manner, with the difference that an expanded data
file with K records per individual and a specific set of weights should be
used. These weights are based on the inverse of the matrix with elements
P (ai|x). Intuitively, what happens is that the observed information on ai is
transformed (reweighted) in such way so that it becomes information on the
true class membership x. For more details, we refer the reader to Vermunt
(2010), Gudicha and Vermunt (2013), and Bakk, Tekle, and Vermunt (2013).

Our simulation studies showed that the ML adjustment is the preferred
approach when the external variables are covariates or categorical depen-
dent variables (Vermunt, 2010; Bakk, Tekle, and Vermunt, 2013). However,
with continuous dependent variables and counts, the BCH is the preferred
method, which results from the fact that using the ML approach involves
making strong additional assumptions about the distributions of the response
variables (Bakk and Vermunt, 2016).

Lanza, Tan, and Bray (2013) recently proposed using distal outcomes as
covariates rather than as dependent variables in the LC model. The Step3
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submodule of Latent GOLD Basic can be used for a step-three variant of
this approach; that is, for estimating a Step3-Covariate model in which the
distal outcomes are used as covariates. The class-specific distal outcome
probabilities/means will be reported in the Profile output. Bakk, Oberski,
and Vermunt (in press) showed that if a continuous distal outcome has error
variances which differ across latent classes, also a quadratic effect should be
included in the model for the classes.

Aside from a ML or BCH adjusted step-three analysis, one may per-
form an unadjusted step-three analysis. For modal class assignment, this is
equivalent to using the modal class assignments outside Latent GOLD. For
proportional class assignment, it is similar to what Latent GOLD does when
it provides ProbMeans and Profile information for inactive covariates.

6.2 Obtaining the Score Equation

The posterior class membership probability P (x|zi,yi) can be written as a
logistic function of the zi and yi variables included in the estimated LC
model. That is,

P (x|zi,yi) =
exp(ζ0x +

∑P
p=1 ζpx · zip +

∑T
t=1 ζP+t,x · yit)∑K

x′=1 exp(ζ0x′ +
∑P
p=1 ζpx′ · zip +

∑T
t=1 ζP+t,x′ · yit)

.

This is what what we refer to as the scoring in equation. Note that for
nominal zi and yit, the appropriate contrasts (dummies or effects) should be
included in the scoring equation.

The Step3-Scoring option computes the ζ coefficients of the above scoring
equation. The computation is, in fact, the same as of an unadjusted step-
three analysis using proportional class assignment. The major difference is
that rather than relating class membership to new variables, it is related to
the same variables used in the original (step-1) model.

The scoring equation obtained in this way will give a perfect representa-
tion of the posterior membership probabilities when the error (co)variances
of continuous indicators and the direct effects between categorical indicators
are class independent and when there are no missing values on the indica-
tors. However, when the original LC model contains continuous indicators
with class-dependent error variances also quadratic terms (yit)

2 should be
included for the indicators concerned, and when the model contains class-
dependent covariances or direct associations (local dependencies), also the
interaction terms (yit · yit′) should be included for these indicators.
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Moreover, when the original model is run with the option to retain cases
with missing values and the scoring equation is also computed with missing
values included, one should include missing value dummies in the scoring
equation. This yields separate ζ coefficients for the missing value categories
of the indicators concerned. A missing value dummy is a variable which is
added to the scoring equation, taking the value 1 if the variable it refers
to is missing and 0 otherwise. It should be noted that the missing values
themselves are handled in the standard way; that is, they are imputed with
either the mean or the average effect, depending on whether the variable is
numeric or nominal (see section 7.2.2). The advantage of the Missing Value
Dummies option (rather than excluding missing values) is that when scoring
new observations, missing values will automatically be handled appropriately.

6.3 Estimation of Step-Three Models and the Scoring
Equation

The Latent GOLD 5.1 implementation of the estimation of step-three models
and the scoring equation is as follows:

1. The data set is expanded to contain one record for each (assigned)
latent class for every case. Moreover, a variable indicating the assigned
class number is appended to this expanded data file.

2. For the ML and BCH adjustment procedures, the rescaled classification
table entries P (ai|x) are computed.

3. The “case” weights for the expanded data set are computed. For modal
ML (or none), the weights equal 1 for the modal class and 0 for the other
classes. For proportional ML (or none), the weights equal the posterior
membership probabilities. For BCH, the weights are obtained by mul-
tiplying the “ML weights” by the inverse of the rescaled classification
table (see Vermunt, 2010).

4. The fixed values for P (ai|x) are specified. For ML adjustment, these
are the numbers computed in step 2. For BCH and no adjustment,
these are 1 for the diagonal entries (ai = x) and 0 for the other entries,
which corresponds to specifying that there are no classification errors.
Note that in the BCH approach it is the case weights that account for
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the classification errors. In step-three dependent models, also the fixed
values for P (x) are specified.

5. One of the LC models defined in equations (13) and (14) is estimated
using the standard Latent GOLD estimation procedures. In the depen-
dent option, a separate model is estimated for each dependent variable.
No random starting values are used, but instead covariate effects get
starting values of 0 and dependent variables get starting values corre-
sponding to their overall proportions/means. Robust standard errors
are used to account for the fact that the model is estimated with mul-
tiple weighted records per case (see Vermunt, 2010).

The scoring equation is estimated using proportional class assignment
without adjustment for classification errors.

7 Estimation and Other Technical Issues

7.1 Log-likelihood and Log-posterior Function

The parameters of the various types of LC models are estimated by means of
Maximum Likelihood (ML) or Posterior Mode (PM) methods. The likelihood
function is derived from the probability density function defined in equation
(1). Let ϑ denote the vector containing the unknown γ and β parameters. As
before, yi and zi denote the vectors of dependent and explanatory variables
for case i, and I denotes the total number of cases.

ML estimation involves finding the estimates for ϑ that maximize the
log-likelihood function

logL =
I∑
i=1

wi log f(yi|zi,ϑ).

Here, f(yi|zi, ϑ) is the probability density associated with case i given pa-
rameter values ϑ and wi is the Case Weight corresponding to case i.22 This
case weight wi can be used to group identical response patterns or to specify
(complex survey) sampling weights. In the former case, wi will serve as a
frequency count, and in the latter case, Latent GOLD will provide pseudo

22In order to simplify the discussion, in this section we discuss only on the situation
without known-class indicators.
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ML estimates (Patterson, Dayton, and Graubard, 2002).23 The other type of
weight – Replication Weight vit – that was introduced in the previous section
modifies the definition of the relevant probability density f(yi|zi, ϑ).

In order to prevent boundary solutions or, equivalently, to circumvent
the problem of non-existence of ML estimates, we implemented some ideas
from Bayesian statistics in Latent GOLD. The boundary problems are that
multinomial probabilities and Poisson rates may become zero, and that er-
ror variances in normal models may converge to zero. The first problem is
circumvented by using Dirichlet priors for the latent and the conditional re-
sponse probabilities and gamma priors for the Poisson rates, and the second
by using inverse-Wishart priors for the error variance-covariance matrices
(Clogg et al., 1991; Galindo-Garre, Vermunt, and Bergsma, 2004: Gelman
et. al., 1996; Schafer, 1997). These are so-called conjugate priors since they
have the same form as the corresponding multinomial, Poisson, and multi-
variate normal probability densities. The implication of using priors is that
the estimation method is no longer ML but Posterior Mode (PM) estimation.

Denoting the assumed priors for ϑ by p(ϑ) and the posterior by P , PM es-
timation involves finding the estimates for ϑ that maximize the log-posterior
function

logP = logL+ log p(ϑ)

=
I∑
i=1

wi log f(yi|zi, ϑ) + log p(ϑ),

or, in other words, finding the point where ∂ logP
∂ϑ = 0. The algorithms used

to solve this problem are described below.
The user-defined parameters in the priors p(ϑ) can be chosen in such a

way that log p(ϑ) = 0, which makes PM estimation turn into ML estimation.
PM estimation can also be seen as a form of penalized ML estimation, in
which p(ϑ) serves as a function penalizing solutions that are too near to the
boundary of the parameter space and, therefore, smoothing the estimates
away from the boundary.

23In Latent GOLD Advanced, there is a more elegant option for dealing with sampling
weights, as well as with other complex survey sampling features.
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7.2 Missing Data

7.2.1 Indicators and dependent variable

Latent GOLD provides full information ML or PM estimates with missing
data in the response variables. Let us look at a simple example in order to get
an impression on how this works. Suppose that we have a LC Cluster model
with four locally independent indicators. The log-likelihood contribution of
case i for which we have observed all four variables observed is, of course,
equal to

logLi = log
K∑
x=1

P (x) f(yi1|x) f(yi2|x) f(yi3|x) f(yi4|x).

On the other hand, the contribution of another case i′ for which the value of
the second indicator is missing equals

logLi′ = log
K∑
x=1

P (x) f(yi′1|x) f(yi′3|x) f(yi′4|x).

As can be seen, the likelihood contribution is based on the observed indicators
only, which means that for case i′, in fact, we have a model with only three
instead of four indicators. It shows that parameters are estimated using all
available information for each of the cases. The assumption that is made is
that the missing data are missing at random (MAR) or, equivalently, that
the missing data mechanism is ignorable (Little and Rubin, 1987; Schafer,
1997; Skrondal and Rabe-Hesketh, 2004; Vermunt, 1997).

Although conceptually similar, technically things are somewhat more
complicated with multivariate densities for multiple response variables, which
are needed with local dependencies. Let us take the same example with four
indicators, but now assume that indicators one, two, and three are correlated
within latent classes. The likelihood contribution for the same persons i and
i′ would now be

logLi = log
K∑
x=1

P (x) f(yi1, yi2, yi3|x) f(yi4|x),

logLi′ = log
K∑
x=1

P (x) f(yi′1, yi′3|x) f(yi′4|x).

As can be seen, for case i′ who has a missing value in the set containing
indicators one, two, and three, f(yi′1, yi′2, yi′3|x) is replaced by f(yi′1, yi′3|x),
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which is obtained by summing over values of the variable with missing val-
ues; that is, f(yi′1, yi′3|x) =

∑M
m=1 f(yi′1, yi′2 = m, yi′3|x). In other words,

the multivariate density f(yih|x, zi) corresponding to set h is based on the
observed variables for the person concerned, and is obtained by summing
over all possible values of the variables with missing values.

In the case of missing data, it is important to clarify the interpretation
of the chi-squared goodness-of-fit statistics. Although parameter estimation
with missing data is based on the MAR assumption, the chi-squared statistics
not only test whether the model of interest holds, but also the much more
restrictive MCAR (missing completely at random) assumption (see Vermunt,
1997). Thus, caution should be used when interpreting the overall goodness-
of-fit tests in situations in which there is missing data.24

7.2.2 Covariates and predictors

If the technical option for including missing values on covariates and predic-
tors is off, cases with missing covariate values and replications with missing
predictor values are excluded from the analysis. When this technical option
is on, such cases and replications are retained by imputing the missing values
using the methods described below.

Missing values on numeric predictors and covariates are replaced by the
sample mean. This is the mean over all cases without a missing value for
covariates and the mean over all replications without a missing value for
predictors. Missing values on nominal predictors and covariates are handled
directly by the design matrix. In fact, the effect for the missing value category
is equated to the average effect for the categories. Recall the effect coding
scheme illustrated in subsection 2.4 for the case of a nominal predictor with
4 categories. Suppose there is also a missing category. The design matrix

24For Syntax models, Latent GOLD has an option (MARchi2) to obtain adjusted chi-
squared statistics under the MAR assumption. By subtracting the chi-squared values of
the saturated model from those of the Latent GOLD model of interest and adjusting the
number of degrees of freedom in the appropriate manner, we obtain the corresponding
chi-squared tests under MAR.
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that is set up for the 3 non-redundant terms is then

category 1
category 2
category 3
category 4
missing

1 0 0
0 1 0
0 0 1
−1 −1 −1

0 0 0

.

As can be seen, the entries corresponding to the missing category are all
equal to 0, which amounts to setting its coefficient equal to zero. Since in
effect coding the unweighted mean of the coefficients equals zero, equating
the effect of the missing value category to zero implies that it is equated to
the unweighted average of the other four categories. This imputation method
for nominal variables is therefore similar to mean imputation with numeric
variables.

In the case of dummy coding with the first category as the reference
category, the design matrix that is set up for the 3 non-redundant terms is

category 1
category 2
category 3
category 4
missing

0 0 0
1 0 0
0 1 0
0 0 1

1/4 1/4 1/4

.

The number 1/4 (one divided by the number of categories of the nominal
variable concerned) implies that the parameter of the missing value category
is equated to the unweighted mean of the parameters of the other four cat-
egories. Note that the coefficient for the reference category is fixed to 0.
Also with “dummy last”, we would get a row with 1/4s for the missing value
category.

7.2.3 Summary of the Missing Value Settings

The Latent GOLD Missing Values option allows for the inclusion of records
containing missing values on covariates and predictors (as well as records
containing missing values on the indicators). The solution we have chosen
for covariates and predictors with missing values is to impute the mean for
the scale type numeric and equate the effect of the missing value category to
zero for the scale type nominal. Missing values on indicators and dependent
variables are handled directly in the likelihood function.
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Exclude cases: For Regression, selection of this option excludes all repli-
cations having missing values on the dependent variable or any of the predic-
tors and all cases having missing values on any of the active covariates. For
Cluster/DFactor, selection of this option excludes all cases having missing
values on any of the indicators or active covariates.

Include indicators/dependent: For Regression, selection of this op-
tion excludes replications having missing values on any of the predictors
and cases having missing values on any of the active covariates. For Clus-
ter/DFactor, selection of this option excludes cases having missing values on
any of the active covariates. After exclusion of these cases, the remaining
cases with missing values on the dependent variable (Regression) or on any
indicator (Cluster and DFactor) are included in the analysis and handled
directly in the likelihood function.

Include all: Selection of this option includes all cases and replications
in the analysis regardless of the presence of missing values. Cases or replica-
tions with missing values on the dependent variable (Regression) or on any
indicator (Cluster and DFactor) are included in the analysis and handled
directly in the likelihood function. Missing values on Predictors (Regression
submodule), or active covariates (Regression, Cluster and DFactor submod-
ules) are imputed using Latent GOLD’s imputation procedure. Inclusion in
a model of covariates designated as inactive has no effect on which cases are
excluded. Therefore, these missing values options have no effect with respect
to the presence or absence of missing values on covariates specified to be
inactive.

7.3 Prior Distributions

The different types of priors have in common that their user-defined pa-
rameters (Bayes Constants) denoted by α can be interpreted as adding α
observations – for instance, the program default of one – generated from a
conservative null model (as is described below) to the data. All priors are
defined in such a way that if the corresponding α’s are set equal to zero, log
p (ϑ) = 0, in which case we will obtain ML estimates. Below we present the
relevant log p (ϑ) terms without their normalizing constants.

Let the symbol Uh denote the number of unique covariate and predictor
patterns in the model for subset h, and uh a particular unique pattern. We
use h = 0 to refer to the model for the latent variable(s). In Regression
models there is only one subset; that is, h = 1 refers to the model for the
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dependent variable. In Cluster and DFactor models, 1 ≤ h ≤ H, where H is
the number of locally independent subsets of indicators.

The Dirichlet prior for the latent class probabilities equals

log p
[
πx|zuo

]
=

α1

K · U0

log πx|zuo .

Here, K denotes the number of latent classes and α1 the Bayes Constant to be
specified by the user. As can be seen, the influence of the prior is equivalent
to adding α1

K
cases to each latent class. These cases are distributed evenly

over the various covariate patterns. This prior makes the sizes of the latent
classes slightly more equal and the covariate effects somewhat smaller.

For categorical response variables, we use the following Dirichlet prior:

log p
[
πm|h,x,zuh

]
=
π̂m|h α2

K · Uh
log πm|h,x,zuh .

where the π̂m|h are based on the observed marginal distributions of the re-
sponse variables in set h. In the univariate case with a single variable in set
h, π̂m|h is simply the observed marginal distribution π̂m|h. In the multivari-
ate case, π̂m|h are estimated probabilities in the independence model; that
is, π̂m|h =

∏
t∈h π̂mt|t. This Dirichlet prior can be interpreted as adding α2

K

observations to each latent class with preservation of the observed marginal
item distributions, where α2 is a parameter to be specified by the user. The
α2

K
observations are distributed evenly over the observed covariate/predictor

patterns. This prior makes the class-specific response probabilities slightly
more similar to each other and smooths the β parameters somewhat towards
zero.

For binomial counts, we use the same Dirichlet prior as for categorical
variables:

log p
[
πh,x,zuh

]
=

π̂h α2

K · Uh
log πh,x,zuh .

where π̂h is the overall observed binomial probability.
For Poisson counts, we implemented a gamma prior. Let θ̂h be the overall

observed Poisson rate. The prior we use has the form

log p
[
θh,x,zuh

]
=
α3

K
log

[
θh,x,zuhα3

K · θ̂h

]
−
θh,x,zuhα3

K · θ̂h
.

This prior can be interpreted as adding α3

K
events to each latent class with

preservation of the overall Poisson rate θ̂h.
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The inverse-Wishart priors25 for the error variance-covariance matrices
are of the form

log p(Σh|x) = −0.5
α4

K
log

∣∣∣Σh|x

∣∣∣− 0.5
α4

K
tr
(
Ds2

h
Σ−1
h|x

)
.

Here, Ds2
h

is a diagonal matrix containing the observed variances of the Kh

dependent variables belonging to set h. This prior can be interpreted as
incrementing each latent class with α4

K
observations which are at a distance of

one standard deviation of the class-specific mean and which have covariances
of zero. Here, α4 is the parameter to be specified by the user. This prior
slightly increases the class-specific error variances and slightly decreases the
class-specific covariances.

The influence of the priors on the final parameter estimates depends on
the values chosen for the α’s, as well as on the sample size. The default
settings are α1 = α2 = α3 = α4 = 1.0. This means that with moderate sam-
ple sizes the influence of the priors on the parameter estimates is negligible.
Setting α1 = α2 = α3 = α4 = 0 yields ML estimates.26

7.4 Algorithms

To find the ML or PM estimates for the model parameters ϑ, Latent GOLD
uses both the EM and the Newton-Raphson algorithm. In practice, the
estimation process starts with a number of EM iterations. When close enough
to the final solution, the program switches to Newton-Raphson. This is a
way to exploit the advantages of both algorithms; that is, the stability of EM
even when it is far away from the optimum and the speed of Newton-Raphson
when it is close to the optimum.

25Actually, our prior differs somewhat from a real inverse-Wishart distribution since we
omit the term − Kh+1

2 log
∣∣Σh|x

∣∣ , where Kh is the number of variables in set h. The reason
for doing this is that this term does not become zero if α4 = 0, which is something we
want to happen in order to be able to switch from PM to ML estimation.

26For Syntax models, Latent GOLD has three additional options for specifying priors:
“perclass” indicates that the numbers specified represent the amount of pseudo-data added
to each class (instead of the total amount of pseudo-data), “percategory” that the number
specified with the categorical option represents the average amount of pseudo-data added
per category of the categorical variables, and “uniform” that the number specified with the
categorical option is divided equally across categories, rather than based on the marginal
distribution of the variable concerned.
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The task to be performed for obtaining PM estimates for ϑ is finding the
parameter values for which

∂ logP
∂ϑ

=
∂ logL
∂ϑ

+
∂ log p(ϑ)

∂ϑ
= 0. (15)

Here,

∂ logL
∂ϑ

=
I∑
i=1

wi
∂ log f(yi|zi,ϑ)

∂ϑ

=
I∑
i=1

wi
∂ log

∑K
x=1 P (x|zi,ϑ)f(yi|x, zi,ϑ)

∂ϑ

=
I∑
i=1

K∑
x=1

wxi
∂ logP (x|zi,ϑ)f(yi|x, zi,ϑ)

∂ϑ
, (16)

where

wxi = wi P (x|zi,yi,ϑ) = wi
P (x|zi,ϑ)f(yi|x, zi,ϑ)

f(yi|zi, ϑ)
. (17)

The EM algorithm is a general method for dealing with ML estimation
with missing data (Dempster, Laird, and Rubin, 1977; McLachlan and Kr-
ishnan, 1997). This method exploits the fact that the first derivatives of the
incomplete data log-likelihood (logL) equal the first derivatives of the com-
plete data log-likelihood (logLc). The complete data is the log-likelihood
that we would have if we knew to which latent class each case belongs:

logLc =
I∑
i=1

K∑
x=1

wxi logP (x|zi,ϑ) f(yi|x, zi, ϑ)

=
I∑
i=1

K∑
x=1

wxi logP (x|zi,ϑ) (18)

+
I∑
i=1

K∑
x=1

wxi
H∑
h=1

log f(yih|x, zi,ϑ).

Each νth cycle of the EM algorithm consist of two steps. In the Expec-
tation (E) step, estimates ŵνxi are obtained for wxi via equation (17) filling

in ϑ̂
ν−1

as parameter values. The Maximization (M) step involves finding

new ϑ̂
ν

improving logLc. Note that we actually use PM rather than ML
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estimation, which means that in the M step we update the parameters in
such a way that

logPc = logLc + log p(ϑ) (19)

increases rather than (18). Sometimes closed-form solutions are available
in the M step. In other cases, standard iterative methods can be used to
improve the complete data log-posterior defined in equation (19). Latent
GOLD uses iterative proportional fitting (IPF) and unidimensional Newton
in the M step (see Vermunt 1997, Appendices).27

Besides the EM algorithm, we also use a Newton-Raphson (NR) method.28

In this general optimization algorithm, the parameters are updated as follows:

ϑ̂
ν

= ϑ̂
ν−1 − ε H−1g.

The gradient vector g contains the first-order derivatives of the log-posterior

to all parameters evaluated at ϑ̂
ν−1

, H is the Hessian matrix containing the
second-order derivatives to all parameters, and ε is a scalar denoting the step
size. Element gk of g equals

gk =
I∑
i=1

wi
∂ log f(yi|zi, ϑ)

∂ϑk
+
∂ log p(ϑ)

∂ϑk
, (20)

and element Hkk′ of H equals

Hkk′ =
I∑
i=1

wi
∂2 log f(yi|zi, ϑ)

∂ϑk∂ϑk′
+
∂2 log p(ϑ)

∂ϑk∂ϑk′
. (21)

Latent GOLD computes these derivatives analytically. The step size ε (0 <
ε ≤ 1) is needed to prevent decreases of the log-posterior to occur. More
precisely, when a standard NR update −H−1g yields a decrease of the log-
likelihood, the step size is reduced until this no longer occurs.

The matrix −H−1 evaluated at the final ϑ̂ yields the standard esti-
mate for the asymptotic variance-covariance matrix of the model parameters:
Σ̂standard(ϑ) = − Ĥ−1.29 Latent GOLD also implements two alternative es-
timates for Σ(ϑ). The first alternative is based on the outer-product of the

27In mixtures models for multivariate normal continuous variables, we use a Fisher-
scoring algorithm within the M step when the covariance-structure parameters have no
closed-form solution.

28Haberman (1988) proposed estimating standard LC models by Newton Raphson.
29The matrix −H is usually referred to as the observed information matrix, which serves

as an approximation of the expected information matrix.
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cases’ contributions to the gradient vectors; that is, Σ̂outer(ϑ) = B̂−1, where
element Bkk′ of B is defined as

Bkk′=
N

N − 1

I∑
i=1

wi
∂ log f(yi|zi, ϑ)

∂ϑk

∂ log f(yi|zi, ϑ)

∂ϑk′
. (22)

Note that B is the sample covariance matrix of the case-specific contributions
to the elements of the gradient vector.

The third estimator for Σ(ϑ) is the so-called robust, sandwich, or Huber-
White estimator, which is defined as

Σ̂robust(ϑ) = Ĥ−1 B̂ Ĥ−1.

The advantage of Σ̂outer(ϑ) compared to the other two is that is much faster
to compute because it uses only first derivatives. It may thus be an alterna-
tive for Σ̂standard(ϑ) in large models. The advantage of the robust method is
that contrary to the other two methods, it does not rely on the assumption
that the model is correct.

Note that Σ̂(ϑ) can be used to obtain the standard error for any function
h(ϑ̂) of ϑ̂ by the delta method:

ŝe
(
h(ϑ̂)

)
=

√√√√(∂h(ϑ̂)

∂ϑ̂

)′
Σ̂(ϑ)

(
∂h(ϑ̂)

∂ϑ̂

)
. (23)

Latent GOLD uses the delta method, for example, to obtain standard errors
of means, probabilities, and redundant parameters.

Inequality restrictions – needed for ordered Clusters, order-restricted pre-
dictor effects, and positive error variances and dispersion parameters – are
dealt with using an active-set variant of the Newton-Raphson method de-
scribed above (Galindo, Vermunt, Croon, 2001; Gill, Murray, and Wright,
1981). For that purpose, the effects involved in the order constraints are
reparameterized so that they can be imposed using simple nonnegativity
constraints of the form ϑ ≥ 0. In an active-set method, the equality con-
straint associated with an inequality constraint is activated if it is violated
(here, parameter is equated to 0 if it would otherwise become negative), and
inactivated if its update yields an admissible value (here, a positive update).

7.5 Convergence

The exact algorithm implemented in Latent GOLD works as follows. The
program starts with EM until either the maximum number of EM iterations
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(Iteration Limits EM ) or the EM convergence criterion (EM Tolerance) is
reached. Then, the program switches to NR iterations which stop when the
maximum number of NR iterations (Iteration Limits Newton-Raphson) or the
overall converge criterion (Tolerance) is reached. The convergence criterion
that is used is

npar∑
p=1

∣∣∣∣∣∣ ϑ̂
ν
p − ϑ̂ν−1

p

ϑ̂ν−1
p

∣∣∣∣∣∣ ,
which is the sum of the absolute relative changes in the parameters. The
program also stops iterating when the change in the log-posterior is negligible,
i.e., smaller than 10−12.

The program reports the iteration process in the Iteration Detail output
file listing. Thus, it can easily be checked whether the maximum number of
iterations is reached without convergence. In addition, a warning is given if
one of the elements of the gradient is larger than 10−3.

It should be noted that sometimes it is more efficient to use only the
EM algorithm, which is accomplished by setting Iteration Limits Newton-
Raphson=0 in the Technical Tab. This is, for instance, the case in models
with many parameters. With very large models, one may also consider sup-
pressing the computation of standard errors and Wald statistics.

7.6 Classification EM Algorithm

As an alternative to maximum likelihood, one may choose to estimate the
parameters of a latent class model by maximizing the classification log-
likelihood. For this purpose, we use the classification EM algorithm (Celeux
and Govaert, 1992). The procedure is similar to K-means clustering since it
yields a hard-partitioning of the sample (Vermunt, 2011), and in fact, with
specific restrictions, it provides a K-means solution as a special case when
all variables are continuous. It can also provide many generalizations to
K-means involving continuous and/or categorical scale types.

The classification log-likelihood is similar to the expected complete data
log-likelihood defined in equation (18), but with the difference that the pos-
terior P (x|zi,yi,ϑ) appearing in the definition of wxi equals either 0 or 1.
That is, it equals 1 if person i is assigned to class x, and 0 otherwise. The
difference between classification EM and regular EM is therefore that in the
E step individuals are assigned to the modal class instead of being assigned
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proportionally to each class according to the current estimates of the poste-
rior membership probabilities.

7.7 Parallel Processing

An important feature of Latent GOLD 5.1 is the use of parallel process-
ing. This is achieved by running a model using multiple threads, where the
(maximum) number of threads can be specified by the user. The Technical
tab contains an option Threads. Here one can set the maximum number
of threads to be used by Latent GOLD. The default is ”all”, implying that
the maximum number of threads is set to equal the number of processors
available on the machine.

Latent GOLD 5.1 uses two different types of parallelizations for its compu-
tations. The first involves distributing multiple estimation runs of the same
model across the available processors. This is what happens in the starting
values and the bootstrap procedures, where the multiple runs concern the
different start sets and the bootstrap replications, respectively. This type of
parallelization speeds up computations by a factor close to the number of
available processors. The second type of parallelization involves performing
parts of the computations of a single estimation run in parallel for portions
of the data set, and subsequently combining (typically adding up) the ob-
tained information. This is used in the E step of the EM iterations and in
the computation of the derivatives for the Newton-Raphson iterations and
the standard errors estimation. This will speed up the estimation in larger
problems (large data sets, models with many parameters, and/or models with
many latent classes), where the faster computations outweigh the additional
”administration” of creating the threads and combining their results.

7.8 Start Values

Latent GOLD generates random start values. These differ every time that
a model is estimated because the seed of the random number generator is
obtained from the system time, as long as the technical option Seed equals
0. The seed used by the program is reported in the output. A run can be
replicated by specifying the reported best start seed as Seed in the Technical
Tab and setting the number of Random Sets to zero.

Since the EM algorithm is extremely stable, the use of random starting
values is generally good enough to obtain a converged solution. However,
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there is no guarantee that such a solution is also the global PM or ML
solution. A well-known problem in LC analysis is the occurrence of local
maxima, which also fulfill the conditions defined by likelihood equations given
in (15).

The best way to prevent ending up with a local solution is the use of
multiple sets of starting values since different sets of starting values may
yield solutions with different log-posterior values. In Latent GOLD, the
use of such multiple sets of random starting values is automated. The user
can specify how many sets of starting values the program should use by
changing the Random Sets option in the Technical Tab. Another relevant
parameter is Iterations specifying the number of iterations to be performed
per start set. More precisely, within each of the random sets, Latent GOLD
performs the specified number of EM iterations. Subsequently, with the
best 10 percent (rounded upwards) in terms of log-posterior, the program
performs an extra 2 times Iterations EM iterations. Finally, it continues
with the best solution until convergence. It should be noted that such a
procedure increases considerably the probability of finding the global PM
or ML solution, especially if both parameters are set large enough, but in
general does not guarantee that it will be found in a single run.

When a model contains two or more latent classes or one or more DFac-
tors, the starting values procedure will generate the specified number of start-
ing sets and perform the specified number of iterations per set. In one-class
models in which local maxima may occur – for example, in models with
continuous factors (see Advanced option) – both the specified number of
starting sets and iterations per set are reduced by a factor of three. In one-
class models in which local maxima cannot occur, the number of starting
sets is automatically equated to 1.

With the option Tolerance, one can specify the EM convergence criterion
to be used within the random start values procedure. Thus, start values
iterations stop if either this tolerance or the maximum number of iterations
is reached.

7.9 Bootstrapping the P Value for Chi2 Statistics or
-2LL Difference

Rather than relying on the asymptotic p value, it also possible to estimate the
p value associated with the goodness-of-fit chi-squared statistics by means of
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a parametric bootstrap. This option is especially useful with sparse tables
(Langeheine, Pannekoek, and Van de Pol, 1996) and with models contain-
ing order restrictions (Galindo and Vermunt, 2005; Vermunt, 1999, 2001).
Bootstrap p values will also be provided for the dissimilarity index, the total
BVR, and the bivariate residuals, which are measures for which the asymp-
totic distribution is unknown, meaning that the p value can only be obtained
by bootstrapping (Oberski, Van Kollenburg, Vermunt, 2013).

When performing a bootstrap Chi2, the model of interest is not only esti-
mated for the sample under investigation, but also for B replication samples.
These are generated from the probability distribution defined by the ML es-
timates. The estimated bootstrap p value, p̂boot, is defined as the proportion
of bootstrap samples with a larger L2 than the original sample. The Monte

Carlo standard error of p̂boot equals
√

p̂boot(1−p̂boot)
B

. The precision of p̂boot can
be increased by increasing the number of replications B. The number of
replications is specified by the parameter Replications. Not only the boot-
strap p values, but also the critical values (CVs) for a type-I error of 5% are
reported.

A similar procedure is used to obtain a bootstrap estimate of the p value
corresponding to the difference in log-likelihood value between two nested
models, such as two models with different numbers of latent classes or dif-
ferent number of discrete factors. The -2LL-difference statistic is defined
as −2 · (LLH0 − LLH1), where H0 refers to the more restricted hypothesized
model (say a K–class model) and H1 to the more general model (say a model
with K + 1 classes). Replication samples are generated from the probability
distribution defined by the ML estimates under H0. The estimated bootstrap
p value, p̂boot, is defined as the proportion of bootstrap samples with a larger
-2LL-difference value than the original sample.

The bootstrap of the -2LL-difference statistic comparing models with
different numbers of latent classes was used by McLachlan and Peel (2000)
in the context of mixture of normals. Nylund et al. (2007), who use the
term BLRT (bootstrap likelihood-ratio test), investigated this method in the
context of LC and mixture growth models. Vermunt (2001) used bootstrap
p values for both the L2 and the -2LL-difference statistic in the context of
order-restricted LC models, where the L2 measured the goodness-of-fit an
ordinal LC model and the -2LL difference concerned the difference between
an order-restricted and an unrestricted LC model.

The other parameter is Seed, which can be used to replicate a bootstrap.
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The seed used by the bootstrap to generate the data sets is reported in the
output.

Two technical details about the implementation of the bootstrap should
be mentioned. For each bootstrap replication, the maximum likelihood esti-
mates serve as start values. Thus, no random sets are used for the replica-
tions. Moreover, when requesting a bootstrap for the -2LL-diff, also boot-
strap Chi2 items will be reported for both models.30

7.10 Identification Issues

Sometimes LC models are not identified; that is, it may not be possible to
obtain unique estimates for some parameters. Non-identification implies that
different parameter estimates yield the same log-posterior or log-likelihood
value. When a model is not identified, the observed information matrix,
−H, is not full rank, which is reported by the program. Another method to
check whether a model is identified is to run the model again with different
starting values. Certain model parameters are not identified if two sets of
starting values yield the same logP or logL values with different parameter
estimates.31.

With respect to possible non-identification, it should be noted that the use
of priors may make models identified that would otherwise not be identified.
In such situations, the prior information is just enough to uniquely determine
the parameter values.

A related problem is “weak identification”, which means that even though
the parameters are uniquely determined, sometimes the data is not informa-
tive enough to obtain stable parameter estimates. Weak identification can
be detected from the occurrence of large asymptotic standard errors. Local
solutions may also result from weak identification.

Other “identification issues” are related to the order of the latent classes
of the latent variables and the uniqueness of parameters for nominal vari-
ables. For unrestricted LC Cluster and LC Regression models, the Clusters
(Classes) are reordered according to their sizes: the first Cluster (Class) is
always the largest Cluster (Class). For unrestricted DFactor models, the or-

30In Syntax models it is possible to apply the full random starting values procedure for
each of the bootstrap samples.

31LG-Syntax contains a more sophisticated procedure to detect identification problems.
It evaluates the rank of the Jacobian matrix for different random parameter values. If the
rank equals the number of free model parameters, the model is (locally) identified.
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dering of the DFactors is determined by the classification R-squared (largest
first), and the order of the levels of each DFactor is such that the first level
is larger than the last level. Parameters (γ’s and β’s) involving nominal
variables are identified by using either effect or dummy coding, which means
that parameters sum to zero over the relevant indices or that parameters
corresponding to the first or last category are fixed to zero. Note that the
Parameters output also contains the redundant γ and β parameters, and in
the case of effect coding also their standard errors.

7.11 Selecting and Holding out Cases or Replications

7.11.1 Selecting Cases or Replications

The Select option on the Variable tab can be used to select a subset of
replications/cases for the analysis. This option makes it straightforward to
perform a separate analysis for different subgroups using the same data file.

When using the default select option no output is provided for the records
(replications/cases) which are not used in the analysis. If one wishes such
output, one should use the holdout cases or holdout replications options,
rather than ignoring the unselected observations.

7.11.2 Holding out Replications

In the Regression submodule, the Select option allows specifying the un-
selected records to be holdout replications. This option can be used for
validation purposes; that is, to determine the prediction performance of the
estimated model for responses which are excluded when estimating the pa-
rameters of the specified model.

A separate set of prediction statistics is reported for the holdout repli-
cations, where for posterior and hblike prediction, the posteriors are based
on the non-holdout replications. Moreover, when requesting predictions to
an output file, this file will also contain the predicted values for the holdout
replications.

7.11.3 Holding out Cases

Validation can also be performed by holding out cases instead of replications.
Whereas parameters estimates will be based on the non-holdout cases, sep-
arate chi-squared, log-likelihood, classification, and prediction statistics are
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computed for the holdout cases. Moreover, the output file will contain classi-
fication and/or prediction information for all cases, thus also for the holdout
cases.

The option for holding out cases can also be used when one desires remov-
ing certain cases from the analysis, but nevertheless obtaining classification
and prediction output to a file for all cases. One possible application is the
analysis of very large data sets, where a subsample may be used for parameter
estimation. Another application is predicting class membership for new cases
based on parameter values obtained with another sample. By appending the
new cases to the original data file and treating them as holdout cases, one
obtains the relevant output for these cases after restoring and re-estimating
the original model.

It should be noted, that classification of new cases can more easily be
done using a scoring equation obtained with the new Step3-Scoring option.
Moreover, in the Cluster module one can request the scoring equation directly
as part of the output (option “Scoring Equations”).

8 Latent GOLD’s Output

Below, we provide the necessary technical details on the quantities presented
in the various Latent GOLD output sections (Model Summary, Parame-
ters, Profile, ProbMeans, Iteration Detail, Frequencies, Bivariate Residu-
als, Standard Classification, Model Classification, and Estimated Values), as
well as on the output that can be written to files (Standard Classification,
Model Classification, Predicted values, Individual Coefficients, Cook’s D, and
Variance-Covariance Matrix).

8.1 Model Summary

This first part of the Model Summary output section reports the number of
cases (N =

∑I
i=1wi), the total number of replications (in Regression models

with a case ID variable, where Nrep =
∑I
i=1wi

∑Ti
t=1 vit), the number of es-

timated parameters (npar), the number of activated constraints (in models
with order restrictions and models with normally distributed response vari-
ables), the seed used by the pseudo random number generator, the seed of
the best start set, and the seed used by the bootstrap procedure.

The last part (Variable Detail) contains information on the variables used
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in the analysis. The other four parts - Chi-squared Statistics, Log-likelihood
Statistics, Classification Statistics, Model Classification Statistics, and Pre-
diction Statistics - are described in more detail below.

8.1.1 Chi-squared statistics

The program reports chi-squared and related statistics, except when the data
file contains replication weights unequal to 0 or 1 or when there are contin-
uous response variables. The three reported chi-squared measures are the
likelihood-ratio chi-squared statistic L2, the Pearson chi-squared statistic X2,
and the Cressie-Read chi-squared statistic CR2. Before giving the definitions
of the chi-squared statistics, we have to explain two types of groupings that
have to be performed with the original cases.

The first is the grouping of identical cases; that is, cases that have the
same covariate, known-class, predictor, and exposure values, and give the
same responses. This yield I∗ unique data patterns with observed frequency
counts denoted by ni∗ , where i∗ denotes a particular data pattern. These fre-
quency counts are obtained by summing the case weights wi of the cases with
data pattern i∗; that is, ni∗ =

∑
i∈i∗ wi.

32 In order to obtain the chi-squared
statistics, we also have to group cases with identical covariate, known-class,
predictor, and exposure values, which amounts to grouping cases without
taking into account their responses.33 This yields the sample sizes Nu for
the U relevant multinomials, where u denotes a particular multinomial or
“covariate” pattern. These sample sizes are obtained by Nu =

∑
i∈uwi or

Nu =
∑
i∗∈u ni∗ .

34 Note that N =
∑U
u=1Nu.

Let m̂i∗ denote the estimated cell count for data pattern i∗, which is
obtained by:

m̂i∗ = Nui∗ f̂(yi∗ |zi∗), (24)

i.e., by the product of the total number of cases with the same “covariate”
pattern as data pattern i∗ (Nui∗ ) and the estimated multinomial probability

32With the somewhat loose but rather simple notation i ∈ i∗ we mean “all the cases
with data pattern i∗”.

33With missing values on some indicators, also the missing value pattern is used as a
grouping criterion. That is, cases belonging to the same “covariate” pattern should also
have observed values on the same set of indicators or, equivalently, the same missing data
pattern.

34With i ∈ u we mean “all the cases with covariate pattern u”, and with i∗ ∈ u “all the
data patterns with covariate pattern u”.
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corresponding to data pattern i∗.35

Using these definitions of m̂i∗ , ni∗ , and N , the chi-squared statistics are
calculated as follows:36

L2 = 2
I∗∑
i∗=1

ni∗ log
ni∗

m̂i∗
,

X2 =
I∗∑
i∗=1

(ni∗)
2

m̂i∗
−N,

CR2 = 1.8
I∗∑
i∗=1

ni∗

[(
ni∗

m̂i∗

)2/3

− 1

]
.

The number of degrees of freedom is defined by

df = min


U∑
u=1

 T ∗u∏
t=1

M∗
ut − 1

 , N
− npar.

Here, T ∗u is the total number of observed indicators (replications) in “covari-
ate” pattern u, and M∗

ut denotes the number of categories of the tth observed
indicator (replication) corresponding to “covariate” pattern u.37 The term
min{·} indicates that df is based on the sample size N when the number
of independent cells in the hypothetical frequency table is larger than the
sample size. The chi-squared values with the corresponding df yield the
asymptotic p -values, which can be used to determine whether the specified
model fits the data.

If the Bootstrap Chi2 option is used, the program also provides the esti-
mated bootstrap p-values corresponding to the X2, L2, and CR2 goodness-
of-fit statistics, as well as the 5% critical values (CV) and the Monte Carlo
standard errors of the p-values. This option is especially useful with sparse
tables, in which case the asymptotic p-values can not be trusted. A good
indication of sparseness is when X2 and L2 take on very different values.

35In order to get meaningful chi-squared statistics, in models with a known-class indi-
cator we, in addition, divide by

∑K
x=1 τi∗xP (x|zi∗).

36Note that we are using a somewhat unconventional formula for X2. The reason for

this is that the sum
∑I∗

i∗=1 is over the nonzero observed cells only.
37A binomial count can take on a values between 0 and the total exposure Eut. Mut

is therefore equal to Eut + 1. A Poisson count can take on any value, which means that
the number of categories is in fact infinity. However, we set Mut = max(yut) + 2, which
amounts to treating all values larger than the largest observed score as a single category.
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The program reports the Bayesian Information Criterion (BIC), the
Akaike Information Criterion (AIC), Akaike Information Criterion 3 (AIC3),
the Consistent Akaike Information Criterion (CAIC), and the sample size
adjusted BIC (SABIC) based on the L2 and df , which is the more common
formulation in the analysis of frequency tables. They are defined as

BICL2 = L2 − log(N) df,

AICL2 = L2 − 2 df,

AIC3L2 = L2 − 3 df,

CAICL2 = L2 − (log(N) + 1) df,

SABICL2 = L2 − log((N + 2)/24) df.

These information criteria weight the fit and the parsimony of a model: the
lower BIC, AIC, AIC3, CAIC, or SABIC the better the model.

Use of information criteria based on L2 or logL (see below) should yield
the same result. The differences between BIC, AIC, AIC3, CAIC, and
SABIC values across models are the same with both methods. However,
with extremely large df , the L2 based information measures may become
more highly negative than the maximum precision can indicate, which makes
their rounded values meaningless. In such cases, one has to use the (equiva-
lent) logL based measures.

Another statistic that is provided in the chi-squared statistics section is
the Dissimilarity Index (DI), which is a descriptive measure that is defined
as follows:

DI =

{ (∑I∗

i∗=1 |ni∗ − m̂i∗|
)

+
(
N −∑I∗

i∗=1 m̂i∗

)}
2N

.

It should be noted that the term (N −∑I∗

i∗=1 m̂i∗) captures the contribution
of the zero observed cells to DI. This term has to be added to the formula
because

∑I∗

i∗=1 |ni∗ − m̂i∗| is a sum over the non-zero cell counts only. DI
is a descriptive measure indicating how much observed and estimated cell
frequencies differ from one another; that is, indicating which proportion of
the sample should be moved to another cell to get a perfect fit.

The last statistic that is provided in the chi-squared statistics section is
the Total BVR; that is, the sum of the bivariate residuals (see subsection 8.6
for details on how the BVRs are computed). This statistic is provided only
if bivariate residuals are requested.

69



If the Bootstrap Chi2 option is used, the program also provides the es-
timated bootstrap p-values for DI and Total BVR, which are statistics for
which the asymptotic distribution is unknown. Also the 5% critical values
(CV) and the Monte Carlo standard errors of the p-values are reported.

8.1.2 Log-likelihood statistics

Furthermore, we report the values of the log-likelihood (logL ), the log-prior
(log p(ϑ)), and log-posterior (logP) . Recall that

logL =
I∑
i=1

wi log f̂(yi|zi),

logP = logL+ log p(ϑ̂).

In addition, the Bayesian Information Criterion (BIC), the Akaike Infor-
mation Criterion (AIC), the Akaike Information Criterion 3 (AIC3),38 the
Consistent Akaike Information Criterion (CAIC), and the sample size ad-
justed BIC (SABIC) based on the log-likelihood are reported. These are
defined as

BIClogL = −2 logL+ log(N)npar,

AIClogL = −2 logL+ 2 npar,

AIC3logL = −2 logL+ 3 npar,

CAIClogL = −2 logL+ (log(N) + 1) npar,

SABIClogL = −2 logL+ log((N + 2)/24) npar.

If the Bootstrap -2LL diff option is used, the program also provides the
estimated bootstrap p-value (and the standard error) for the -2LL difference
test between a restricted and an unrestricted model.

8.1.3 Classification statistics

This set of statistics contains information on how well we can predict to
which latent class cases belong given their observed y and z values, or, in
other words, how well the latent classes are separated. Classification is based

38Results from Andrews and Currim (2003) and Dias (2004) suggest that AIC3 is a
better criterion than BIC and AIC in determining the number of latent classes in LC and
FM models.
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on the latent classification or posterior class membership probabilities. For
response pattern i, these are calculated as follows:

P̂ (x|zi,yi) =
P̂ (x|zi)f̂(yi|x, zi)

f̂(yi|zi)
. (25)

The numerator and denominator are the maximum likelihood estimates for
the terms appearing in the general mixture model defined in equation (1).

These quantities are used to compute the estimated proportion of classi-
fications errors (E), as well as three R2-type measures for nominal variables:
the proportional reduction of classification errors R2

x,errors, a measure based
on entropy labelled R2

x,entropy, and a measure based on qualitative variance
labelled R2

x,variance. The former is similar to the association measure Lambda
and the latter to the Goodman and Kruskal tau-b association coefficient for
nominal dependent variables (Magidson, 1981).

The proportion of classification errors is defined as:

E =

∑I
i=1 wi

[
1−max P̂ (x|zi,yi)

]
N

.

Each of the three R2
x measures is based on the same type of reduction of

error structure; namely,

R2
x =

Error(x)−Error(x|z,y)

Error(x)
, (26)

where Error(x) is the total error when predicting x without using information
on z and y, and Error(x|z,y) is the prediction error if we use all observed
information from the cases. Error(x|z,y) is defined as the (weighted) average
of the case-specific errors Error(x|zi,yi),

Error(x|z,y) =

∑I
i=1 wiError(x|zi,yi)

N
.

The three R2
x measures differ in the definition of Error(x|zi,yi). In R2

x,errors,

it equals 1−max P̂ (x|zi,yi), in R2
x,entropy,

∑K
x=1− P̂ (x|zi,yi) log P̂ (x|zi,yi),

and in R2
x,variance, 1 − ∑K

x=1[P̂ (x|zi,yi)]2 . In the computation of the total

error Error(x), the P̂ (x|zi,yi) are replaced by the estimated marginal latent

probabilities P̂ (x), which are defined as

P̂ (x) =

∑I
i=1wiP̂ (x|zi,yi)

N
=

∑I
i=1 ŵxi
N

. (27)
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In DFactor models, we use the same definitions, but then for each of the L
discrete factors x`. An exception is the definition of R2

x`,variance
for which we

can use the category scores, yielding a standard variance. The contribution

of case i to Error(x`|zi,yi) equals
∑K`
x`=1

[
x`∗x` − Ê(x`∗)

]2
P̂ (x`|zi,yi), where

Ê(x`∗) =
∑K`
x`=1 x

`∗
x`
P̂ (x), and Error(x`) equals

∑K`
x`=1

[
x`∗x` − Ê(x`∗)

]2
P̂ (x`).

Latent GOLD reports five other classification statistics: the Classification
Log-likelihood (CL), the Entropy, the Classification Likelihood Criterion
(CLC), the Approximate Weight of Evidence (AWE), and a version of the
Integrated Classification Likelihood called ICL-BIC. CL and Entropy are
quantities needed to compute the other three. CLC indicates how well a
model performs in terms of fit and classification performance. The AWE
and ICL-BIC statistics adds a third dimension to the information criteria
described above; they weight fit, parsimony, and the performance of the
classification (Banfield and Raftery, 1993; McLachlan and Peel, 2000).

The classification log-likelihood is equivalent to the complete data log-
likelihood logLc, i.e.,

CL = logLc =
I∑
i=1

K∑
x=1

ŵxi log P̂ (x|zi)f̂(yi|x, zi).

It can also be computed as

CL = logL − Entropy,

where Entropy is defined as follows

Entropy =
I∑
i=1

wi
K∑
x=1

−P̂ (x|zi,yi) log P̂ (x|zi,yi).

The Classification Log-likelihood Criterion equals

CLC = −2CL = −2 logL+ 2Entropy.

AWE is defined as

AWE = CLC + 2
(

3

2
+ logN

)
npar

= −2 logL+ 2Entropy + 2
(

3

2
+ logN

)
npar,
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and ICL-BIC as

ICL-BIC = BIC + 2Entropy

= −2 logL+ 2Entropy + log(N)npar.

The lower AWE and/or ICL-BIC value, the better a model.
The Classification Tables cross-tabulate the true class memberships x

against the assigned (or predicted) class memberships x̂. That is, the count
in cell entry (x, x̂) indicates the number of persons belonging to class x and
being assigned to class x̂. This number is obtained as the sum of the class
x posterior membership probabilities for the cases allocated to class x̂. It is
computed as follows:

I∑
i=1

wiP̂ (x|zi,yi)P̂ (x̂|zi,yi),

where for modal assignment P̂ (x̂|zi,yi), equals 1 for the modal class and 0
for the other classes, and for proportional assignment, it is just the posterior
membership probability for class x̂.

The diagonal elements (x = x̂) are the numbers of correct classifications
per latent class and the off-diagonal elements (x 6= x̂) the corresponding
numbers of misclassifications. From the classification table, one can not
only see how many cases are misclassified (as indicated by the proportion of
classification errors E), but also detect which are the most common types of
misclassifications. If a particular off-diagonal entry is large, this means that
latent classes x and x̂ are not well separated. In DFactor models a separate
set of classification tables is reported for each discrete factor.

The margins of the Classification Table show the distribution of cases
across classes under modal/proportional classification (column totals) and
according to the model (row totals). Except for very rare situations, for
modal classification, these margins will not be equal to one another. This
illustrates the phenomenon that modal class assignments do not conserve the
estimated latent class distribution. Whereas the row totals are in agreement
with the estimated classes sizes,39 the column totals show the latent class
distribution that is obtained when writing the class assignments to a file
using the Latent GOLD output-to-file option. For proportional classification,

39There may be a very small difference, which is caused by the Bayes constant for the
latent classes.
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row and column totals are identical and, moreover, the classification table is
symmetric.

8.1.4 Model classification statistics

These statistics indicate how well one can predict class membership from an
individual’s covariate values, and are therefore only of interest if the esti-
mated model contains active covariates. The measures are similar to those
reported in the section “Classification Statistics”; that is, the estimated pro-
portion of classification errors, the proportional reduction of classification
errors, an entropy-based R2 measure, and a (qualitative) variance-based R2

measure. The difference is that now the predictions (and computations) are
based on the model probabilities P̂ (x|zi) instead of the posterior probabili-

ties P̂ (x|zi,yi). Whereas the total error can still be denoted as Error(x), the
model prediction error in equation (26) should now be denoted as Error(x|z)
instead of Error(x|z,y).

8.1.5 Prediction statistics

In the Regression submodule, there is a prediction statistics section, which
are based on the comparison between observed and predicted responses.
The predicted values (probabilities) used in the computation of the predic-
tion statistics are denoted by ŷit ( P̂m|it). Latent GOLD implements three
types of methods for obtaining predicted values: posterior mean prediction,
Hierarchical-Bayes-like prediction, and model based prediction.

In posterior-mean (mode) or expected (modal) a posteriori prediction, the
predicted values ŷit (P̂m|it) are obtained as weighted averages of the Class-

specific estimates, where the posterior membership probabilities P̂ (x|zi,yi)
serve as weights; that is,

ŷit =
K∑
x=1

P̂ (x|zi,yi) Ê(yit|x, zpredit ),

P̂m|it =
K∑
x=1

P̂ (x|zi,yi) P̂ (yit = m|x, zpredit ).

Note that Ê(yit|x, zpredit ) equals µ̂x, zit for continuous variables, θ̂x, ziteit for

Poisson counts, π̂x, zit eit for binomial counts, and
∑M
m=1 y

∗
m P̂ (yit = m|x, zpredit )
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for ordinal variables, where y∗m is the score assigned to category m. For trun-
cated variables, Ê(yit|x, zpredit ) is replaced by Ê(yit|x, zpredit , yit > 0), which
equals θ̂x, ziteit / [1− P̂ (0|x, zpredit )] and πx, zit eit / [1− P̂ (0|x, zpredit )] for Pois-

son and binomial counts, and µ̂x, zit + σ̂x f̂(yit|x, zpredit ) / [1 − F̂ (0|x, zpredit )]
for continuous variables. The Class-specific predicted values for censored
normal variables are defined as µ̂x, zit [1 − F̂ (0|x, zpredit )] + σ̂x f̂(yit|x, zpredit ).
These definitions show that for zero-truncated and zero-censored response
variables predictions are based on estimated expected values conditional on
truncation or censoring at yit = 0 (see, for example, Long 1997).

The most natural predicted value for an ordinal, continuous, and count
variable, is the individual-specific estimated expected value ŷit. For nominal
variables, this is the mode corresponding to the category with the largest
P̂m|it. As shown below, error measures for categorical variables may also
be based on the M estimated probabilities instead of a single predicted
value. For categorical dependent variables, we report a prediction table cross-
classifying observed and predicted values based on the mode.

The average prediction error can be defined in various manners. We im-
plemented measures based on squared error (MSE), minus the log-likelihood
(−MLL), absolute error (MAE), and, for categorical variables, also the pro-
portion of predictions errors (PPE). The various types of error measures can
be denoted by the generic name Error(model). Except for nominal dependent
variables, computation of MSE and MAE is straightforward:

MSE =

∑
iwi

∑
t vit[yit − ŷit]2∑
iwi

∑
t vit

MAE =

∑
iwi

∑
t vit|yit − ŷit|∑

iwi
∑
t vit

Here, wi and vit denote case and replication weights. For nominal variables,
[yit−ŷit]2 and |yit−ŷit| are replaced by a sum over all categories:

∑
m[Im(yit)−

P̂m|it]
2 and

∑
m |Im(yit) − P̂m|it|, where indicator variable Im(yit) equals 1 if

yit = m and otherwise 0. The mean minus log-likelihood (−MLL) is obtained
using ŷit as expected value in the appropriate log density function. Again,
we take the average over all cases and replications. More precisely,

−MLL = −
∑
iwi

∑
t vit log f [yit|ŷit]∑
iwi

∑
t vit

.

With categorical variables, we replace log f [yit|ŷit] by
∑
m Im(yit) ln[P̂m|it].
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The general definition of the (pseudo) R2
y of an estimated model is the

reduction of errors compared to the errors of a baseline model. More precisely,

R2
y =

Error(baseline)− Error(model)

Error(baseline)
.

Our baseline prediction, ŷ0 or P̂m|0 is the average predicted value or response
probability according to the specified model; that is,

ŷ0 =

∑
iwi

∑
t vitŷit∑

iwi
∑
t vit

(28)

P̂m|0 =

∑
iwi

∑
t vitP̂m|it∑

iwi
∑
t vit

. (29)

Notice that in most situations, ŷ0 and P̂m|0 are simply the observed sample
averages, or the predicted values in the intercept-only model. This is, how-
ever, not necessarily the case when restrictions are imposed on the intercept.

There are two other prediction methods – HB-like and model Prediction.
These differ from posterior mean prediction in the definition of ŷit and P̂m|it.
For HB-like prediction, the predicted values are obtained from the individual-
specific posterior mean estimates of the linear terms, denoted by η̂it or η̂m|it
and defined as

η̂it =
K∑
x=1

P̂ (x|zi,yi) η̂x,zit ,

η̂m|it =
K∑
x=1

P̂ (x|zi,yi) η̂m|x,zit .

These linear terms are transformed into expected values ŷit and response
probabilities P̂m|it using the appropriate inverse link function. The ŷit and

P̂m|it are subsequently used in the above R2
y formulas. Because of the sim-

ilarity with prediction in Hierarchical Bayes (HB) procedures, we call this
alternative method HB prediction. Note that the way we compute η̂it and
η̂m|it is equivalent to computing these numbers from the individual-specific

β̂iq parameters defined in equation (30).
Model-based prediction differs from posterior mean prediction in that the

prior (model) class membership probabilities P̂ (x|zi) are used in the formu-

las for ŷit and P̂m|it given in equations (28) and (29) instead of the posterior
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membership probabilities P̂ (x|zi,yi). Whereas posterior mean and HB-like
prediction give a good indication on the within-sample prediction perfor-
mance, model-based prediction gives a good indication on the out–of-sample
prediction performance.

8.2 Parameters

In the Parameters output section, the program reports the estimates obtained
for the β and γ parameters appearing in the linear predictors η, the estimates
for error variances and covariances σ, as well as the corresponding estimated
asymptotic standard errors, ŝe(β), ŝe(γ), and ŝe(σ). These standard errors
are the squared roots of the diagonal elements of the estimated variance-
covariance matrix Σ̂(ϑ). As described earlier one of three methods can be
used to obtain Σ̂(ϑ), yielding either a standard, outer-product based, or
robust standard errors and Wald statistics.

The significance of sets of parameters can be tested by means of the re-
ported Wald statistic labeled Wald. In LC Regression models, we also report
a Wald statistic labeled Wald(=), which tests whether regression coefficients
are equal between Classes (Class Independent). The Paired Comparisons
output, which is nested within Parameters, provides Wald tests comparing
parameters across each pair of latent classes. This allows, for example, test-
ing in a Cluster model which Clusters are significantly different in terms of
the indicators, in a Regression model which Classes have significantly dif-
ferent predictor effects, or in a Step3 model for which pairs of Classes the
effects of the Covariates are significantly different.40 The general formula for
a Wald statistic (W 2) is

W 2 =
(
C
′
ϑ
)′ (

C
′
Σ̂(ϑ)C

)−1 (
C
′
ϑ
)
,

where the tested set of linear constraints is: C
′
ϑ = 0. The Wald test is

a chi-squared test. Its number of degrees of freedom equals the number
of constraints. Computation of standard errors and Wald statistics can be
suppressed. This option may be useful in models with many parameters.

In the Regression submodule, the parameters output contains Class-
specific R2

y|x values based on MSE (see also prediction statistics). In the

40Note that typically one may wish to account for multiple testing, for example, by ap-
plying a Bonferroni-correction which involves dividing the type I error rate by the number
of tests (by the number of pairs of classes).
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computation of the Class-specific errors, each observed value yit is compared
with the Class-specific prediction given by the model, ŷitx = Ê(yit|x, zpredi ).
The posterior membership probabilities P̂ (x|zi,yi) quantify the contribution
of case i to the error of Class x. More precisely, MSEx is obtained as

MSEx =

∑
iwix

∑
t vit[yit − ŷitx]2∑

iwix
∑
t vit

,

where wix = wi P̂ (x|zi,yi). Similarly to the overall R2
y, in the computation

of each Class-specific R2
y|x, we use the average ŷitx (ŷ0x) to derive a baseline

error.
In Regression, we also report the means and standard deviations of the

regression coefficients. These are the typical fixed and random effects in mul-
tilevel, mixed, or random-coefficient models. The mean equals

∑
x P (x) β̂xq,

and the standard deviation

√∑K
x=1 P̂ (x)(β̂xq)2 −

[∑K
x=1 P̂ (x) β̂xq

]2
.

The parameters output in the Cluster and DFactor submodules contains a
separate R2

yt value for each indicator. These are similar to explained variances
in analysis of variance and item communalities in traditional factor analysis.
For the scale types ordinal, continuous, and count, these are standard ex-
plained variances; that is, they are defined as the ratio of the between-class
and total variation of the yt variable concerned. For nominal indicators,
the R2

yt is based on the qualitative variance (Magidson, 1981), which is the
sum of the category-specific variances (see classification statistics), yielding
a Goodman and Kruskal tau-b measure.

The Loadings output in Cluster and DFactor and the Correlations output
in DFactor contains some further “factor-analytic” output, as described in de-
tail by Magidson and Vermunt (2003a) and Vermunt and Magidson (2005a).
This factor-analytic output is obtained by a linear approximation of the logis-
tic and log-linear regression models for the indicators. The loadings output
has an interpretation similar to factor loadings in a standard factor analysis –
standardized linear effects of latent variables on indicators. The correlations
output provides the DFactor-DFactor and DFactor-indicator correlations.

The Error Correlations output provides the estimates of the within-class
correlations between continuous indicators variables. Often, these correla-
tions are easier to interpreted than the covariances, which are the actual
model parameters.
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8.3 Profile

The Profile output contains information on

• class sizes P̂ (x),

• class-specific response probabilities π̂m|t,x for nominal variables,

• class-specific response probabilities π̂m|t,x and means
∑Mt
m=1 y

t∗
m π̂m|t,x for

ordinal variables,

• class-specific means µ̂t,x for continuous response variables,

• class-specific rates θ̂t,x for Poisson counts,

• class-specific success probabilities π̂t,x for binomial counts,

• class-specific means Ê(zir|x) and probabilities P̂ (zir = a|x) for covari-
ates.

Except for the covariate information, these are all transformations of the
β and γ parameters – or corresponding linear terms η – to a scale that makes
the profiling of the Clusters (Classes) much easier. In DFactor models, this
information is provided for each discrete factor x`, as well as for the joint
latent variable x obtained by combining the L DFactors.

The first part of the Profile output contains the estimated marginal la-
tent probabilities (Cluster sizes, DFactor level sizes, Class sizes). In Cluster,
Regression, and one-DFactor models without covariates, these are just the
model probabilities P̂ (x). In models with covariates or multiple DFactors,
these numbers are computed by aggregating the model probabilities P̂ (x|zi)
over covariates values and/or other DFactors as follows:

P̂ (x) =
I∑
i=1

wi
N
P̂ (x|zi)

P̂ (x`) =
I∑
i=1

∑
x`′ 6=x`

wi
N
P̂ (x|zi).

The second part of the Profile output reports the class-specific marginal
means (probabilities) for all indicators. In Cluster models without direct
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effects of covariates on indicators and without direct indicator-indicator re-
lations, these are simply the means (probabilities) defining the class-specific
distributions. In other cases, however, these numbers should be obtained
by aggregating over the other variables involved in the submodel for the re-
sponse variable concerned. As an example of this aggreagrtion process, let us
consider one of the more complicated cases. Suppose we have a LC Cluster
model with covariates having direct effects on indicators and with a local
dependency between nominal indicators y1 and y2. The marginal probability
P̂ (yi1 = m|x) is obtained as follows:

P̂ (yi1 = m1|x) =

∑I
i=1

∑M2
m2=1

wi
N
P̂ (x|zi)P̂ (yi1 = m1, yi2 = m2|x, zi)

P̂ (x)
.

As can be seen, we aggregate the joint probability of yi1, yi2, conditional
on x, and zi over zi and yi2, and divide the result by the marginal latent
probability P̂ (x).

Instead of marginal means (probabilities) one can also request partial
means (probabilities). These are obtained by evaluating the linear terms η
at the mean of the other variables involved in the model for the indicator
concerned. The partial linear term is subsequently transformed into a prob-
ability, rate, or mean using the inverse link functions described in Section 2.
The resulting class-specific partial means (probabilities) show the x-y effects
on a more natural scale (probability, rate, or mean) for a person with average
values on all other variables appearing in the model for the response vari-
able concerned.41 Note that in models with a single latent variable, without
effects of covariates on yit, and without local dependencies involving yit, the
resulting partial means equal the means appearing in the model densities, as
well as the marginal means. This also applies to the joint partial means in
the DFactor model.

Standard errors for the marginal latent probabilities, and the class-specific
marginal and partial means are computed using the delta method (see equa-
tion 23).

For zero-truncated and zero-censored response variables, the reported
class-specific marginal means are expected values conditional on truncation
or censoring at yit = 0 (see also subsection 8.1.5). In contrast, the reported
partial means are expected values unconditional on truncation or censoring.

41For nominal variables, we fill in the unweighted average category-specific effects.
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As mentioned above, Latent GOLD also provides Profile output for co-
variates. It reports the class-specific means for numeric covariates, as well as
the class-specific probabilities of being in a certain range of covariate values.
These means and probabilities are obtained by aggregating and re-scaling
posterior membership probabilities:

P̂ (zir = a|x) =

∑
zir=awi P̂ (x|zi,yi)∑
iwi P̂ (x|zi,yi)

Ê(zir|x) =

∑I
i=1
zir wi P̂ (x|zi,yi)∑
iwi P̂ (x|zi,yi)

It should be noted that Profile output for covariates is, in fact, re-scaled
ProbMeans output (for more details, see ProbMeans output below).

The (joint) partial and marginal conditional means are plotted in the
Profile Plot. This makes it easy to identify differences between Clusters,
Classes, or levels of DFactors.

8.4 ProbMeans

The Profile output gives the conditional distribution of a y variable given an
individual’s score on a latent variable. However, it may also be of interest to
look at the distribution of the latent variable for a certain level of an observed
variable. Measures of these kinds appear in the ProbMeans output and the
associated Uni-, Bi-, and Tri-Plots.

The probability of being classified in a certain latent class given a par-
ticular z or y value – P̂ (x|zir = a) or P̂ (x|yit = a) – can be obtained by
aggregating the latent classification probabilities defined in equation (25) in
the appropriate manner. More precisely,

P̂ (x|yit = a) =

∑
yit=awi P̂ (x|zi,yi)∑

yit=awi
.

A similar formula can be used to obtain the probabilities for the covariates,
P̂ (x|zir = a).

In LC Cluster and Regression models, the above average class membership
probabilities are plotted in Uni- and Tri-plots (Magidson and Vermunt, 2001;
Vermunt and Magidson 2000). Similar plots have been proposed by Van der
Ark and Van der Heijden (1998) and Van der Heijden, Gilula, and Van der
Ark (1999) for standard LC and latent budget models.
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In LC DFactor models, we work with DFactor means rather than class
membership probabilities; that is,

Ê(x`|yit = a) =
K∑̀
x`=1

x`∗x` P̂ (x`|yit = a).

Here, x`∗x` is the category score of level x` of the `th DFactor. The same
formula can be used to obtain a DFactor mean for a certain covariate value.
Note that in LC DFactor analysis we use scores ranging from 0 to 1 for the
DFactor levels. This implies that with a dichotomous DFactor, a DFactor
mean equals the probability of being in level (class) 2.

The DFactor means for each covariate level and for each indicator level
are plotted in the Uni- and Bi-plots of our DFactor models (Magidson and
Vermunt, 2001; Vermunt and Magidson 2000).

A nice feature of the ProbMeans output is that it describes the relation-
ships between the latent variable(s) and all variables selected as indicators
or covariates. This means that even if a certain covariate effect is fixed to
zero, one still obtains its ProbMeans information. This feature is exploited
in the “inactive covariates method”. An advantage of working with inactive
covariates is that they do not influence the obtained solution.

8.5 Frequencies / Residuals

In LC Cluster and DFactor models containing only discrete (nominal, ordinal,
or Poisson/binomial count) indicators and in LC Regression models for a
nominal, ordinal, or (Poisson/binomial) count dependent variable, Latent
GOLD reports estimated and observed cell frequencies (m̂i∗ and ni∗), as well
as standardized residuals (r̂i∗). Note that this information is provided only for
the observed data patterns (the non-zero observed cells).42 The computation
of the estimated cell entries was described in equation (24). The standardized
residuals are defined as

r̂i∗ =
m̂i∗ − ni∗√

m̂i∗
.

Note that (r̂i∗)
2 is cell i∗’s the contribution to the X2 statistic.

This output section also contains a column Cook’s D (Cook’s Distance).
This measure can be used to detect influential cases or, more precisely, cases

42The option WriteExemplaryData in Latent GOLD Syntax yields the estimated fre-
quencies for all possible data patterns.
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having a larger influence on the parameter estimates than others. The exact
formula that is used in Latent GOLD 5.1 is given in equation (31). A typical
cut-point for Cook’s D is four times the number of parameters divided by the
number of cases (Skrondal and Rabe-Hesketh, 2004). Note that the reported
value in a particular row corresponds to the Cook’s D for each of the cases
with that data pattern.

8.6 Bivariate Residuals

As explained when presenting the various types of LC models implemented
in Latent GOLD, one of the main assumptions in LC analysis is local inde-
pendence. The reported bivariate residuals for zcov-y and y-y pairs provide
direct checks of this assumption. They indicate how similar the estimated
and observed bivariate associations are. The measures can be interpreted
as lower bound estimates for the improvement in fit (L2 or −2 logL) if the
corresponding local independence constraints were relaxed.43

Actually, these measures, which are sometimes referred to as modification
indices, are Score- or Lagrange-type chi-squared statistics. Likelihood-ratio
statistics compare the log-likelihood values of a restricted and an unrestricted
model, Wald statistics estimate the decrease of the log-likelihood value if
constraints are imposed in the unrestricted model, and Score or Lagrange-
multiplier statistics estimate the increase of the log-likelihood value if con-
straints are relaxed in the restricted model or, equivalently, if parameters are
added to the restricted model (Buse, 1982). Even though the bivariate resid-
uals reported in Latent GOLD are similar to Score or Lagrange-multiplier
tests, they are not exactly the same because they do not take the depen-
dencies between the parameters in the restricted model and the new set into
account (Oberski, Van Kollenburg, Vermunt, 2013).

Suppose that a particular local dependency contains P parameters de-
noted by ϑlocalp . The general formula for our Lagrange-type residuals is:

BV R =
1

P

P∑
p=1

(
∂ logP
∂ϑlocalp

)2

/

(
∂2 logP
∂2ϑlocalp

)
.

Thus, for each of the P parameters, the first- and second-order derivatives

43Similar but not completely equivalent approaches for detecting local dependencies
have been proposed by Bartholomew and Tzamourani (1999), Glas (1999), Reiser (1996),
and Reiser and Lin (1999)
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of the log-posterior is computed. Dependencies between the parameters in
a set, as well as with the main effects, is dealt with by including redun-
dant parameters in a set. To further reduce the computational burden, in
some situations, we use an approximation for the second-order derivatives.
Note that because of the factor 1

P
, the measure should be interpreted as the

estimated model fit improvement per extra parameter.
Latent GOLD reports zcov-y residuals for all types of y variables. These

are based on the relevant set of βtr (βtmr with a nominal y) terms. The y-
y residuals for pairs of categorical (nominal or ordinal) variables are based
on βtt

′
mm′ (nominal-nominal), βtt

′
.m′ (ordinal-nominal), βtt

′
m. (nominal-ordinal),

or βtt
′

.. (ordinal-ordinal) terms, and for pairs of continuous variables on the
error covariances σtt′ . These are all terms that can be included in the model.

For other y-y pairs, we use a more ad hoc procedure to determine the
size of the residuals. Residuals for categorical-continuous and categorical-
count pairs assume that the categorical variable is (also) used as a covariate
affecting the continuous or count variable. Count-continuous residuals use
the count as a covariate in the model for the continuous indicator, and count-
count residuals are obtained as the average BV R of the regression of yit on
yit′ and yit′ on yit. As explained in the subsection on LC Cluster models for
mixed mode data, these types of local dependencies can only be included in
the model by a trick that requires including a variable both as covariate and
as indicator in the model.

For categorical indicators, a BVR has the form of a Pearson chi-squared
divided by P ; that is,

BV Rt,t′ =
1

P

Mt∑
m=1

Mt′∑
m′=1

[nm,m′ − E(nm,m′)]
2

E(nm,m′)
,

where

E(nm,m′) =
I∑
i=1

wi
K∑
x=1

P̂ (yit = m|x)P̂ (yit′ = m′|x)P̂ (x|zi,yi).

Note that even though not indicated explicitly, the sum i is over the cases for
which both yit and yit′ are observed. Also the observed frequency table with
entries nm,m′ is obtained with the cases without missing values on yit and
yit′ . For ordinal indicators, we replace nm,m′ by n̂m,m′ . These are frequency
counts respecting the linear-by-linear or linear-by-nominal association struc-
ture, obtained with a set of uni-dimensional Newton iterations.
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For a covariate and a categorical indicator, the BVR has the same form,
with

E(nm,m′) =
I∑
i=1

wi
K∑
x=1

P̂ (yit = m|x)I(zip = m′)P̂ (x|zi,yi).

Here, I(zip = m′) is an indicator variable taking on the value 1 if the condition
is true and otherwise 0. As for ordinal indicators, the observed frequency
counts are adjusted when the covariate is numeric.

If the Bootstrap Chi2 option is used, the program also provides the esti-
mated bootstrap p-values for the BV Rs, which are statistics for which the
asymptotic distribution is unknown (Oberski, Van Kollenburg, and Vermunt
2013). Also the 5% critical values (CV) and the Monte Carlo standard errors
of the p-values are reported.

8.7 Estimated Values

In Regression the Estimated Values output section reports the estimated
Class-specific, the estimated overall, and the observed means (probabilities)
for each unique predictor pattern. Let zpredu refer to a unique predictor pat-
tern. With continuous variables one gets the estimated means µ̂t,x,zpredu

; with

Poisson counts the estimated rates θ̂t,x,zpredu
, with binomial counts the suc-

cess probabilities π̂t,x,zpredu
, with ordinal or nominal responses the probabilities

π̂m|t,x,zpredu
, and with ordinal variables also the means

∑Mt
m=1 y

t∗
m π̂m|t,x,zpredu

. The
overall estimates are weighted averages of the Class-specific estimates.

For zero-truncated and zero-censored response variables, the class-specific
estimated values are conditional on truncation or censoring at yit = 0 (see
also subsection 8.1.5).

In Cluster, DFactor and Step3, Estimated Values contains the model
probabilities and means. In most models this will be the same information
as provided by Classification-Model and Profile; that is, the class member-
ship probabilities conditional on covariates and the class-specific indicator
probabilities or means. However, Estimated Values gives more detailed in-
formation in DFactor models with multiple DFactors, in models with direct
effects of covariates on indicators, and in models with direct effects between
categorical indicators. These are situations in which Classification-Model
and Profile give marginal probabilities and means.
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8.8 Classification

The Classification-Posterior output section contains the classification infor-
mation for each response pattern i∗. Classification is based on the latent
classification or posterior class membership probabilities, P̂ (x|zi∗ ,yi∗), de-
scribed in equation (25). In LC Cluster models and LC Regression models,
these quantities are used to determine to which latent class someone belongs.
More precisely, subjects are assigned to the latent class with the highest latent
classification probability. This method of assignment is sometimes referred
to a empirical bayes modal (EBM) or modal a posteriori (MAP) estimation
(Skrondal and Rabe-Hesketh, 2004).

In DFactor models, there may be more that one latent variable. In ad-
dition, the discrete factors are ordinal (or discrete interval) variables that
can be used as approximations of continuous latent variables with unknown
distributions. Therefore, in LC DFactor models, Latent GOLD not only re-
ports the classification probabilities P̂ (x`|zi∗ ,yi∗) and the modal allocation
for each DFactor, but also the estimated DFactor scores or posterior DFactor
means. The DFactor scores for response pattern i are obtained by

Ê(x`|zi∗ ,yi∗) =
K∑̀
x`=1

x`∗x`P̂ (x`|zi∗ ,yi∗).

Here, x`∗x` denote the category scores (ranging from 0 to 1) for the levels of
the latent variable concerned. DFactor scores computed in this manner are
sometimes referred to as empirical bayes (EB) or expected a posterior (EAP)
estimators (Skrondal and Rabe-Hesketh, 2004).

Classification-Model is the classification that is obtained based on covari-
ates only. This involves using the model probabilities P̂ (x|zu), sometimes
referred to as prior probabilities, as classification probabilities for each covari-
ate pattern u. In DFactor models, we need to compute the DFactor-specific
marginal conditional probabilities P̂ (x`|zu). The classification rules are the
same as applied to the posterior class membership probabilities.

8.9 Output-to-file Options

Five different types of information can be output to a data files: classifica-
tion, classification based on covariates, predicted values, individual-specific
coefficients, and the estimated variance-covariance matrix of the model pa-
rameters.
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For Classification-Posterior and Classification-Model, the output file con-
tains the posterior class-membership probabilities P̂ (x|zi,yi) and the model

probabilities P̂ (x|zi), respectively, as well as the modal class assignments
based on these probabilities. For DFactor models, the file contains the
DFactor-specific classification probabilities, the DFactor means, and the joint
classification probabilities for all DFactors simultaneously.

For Regression models, the Predicted Values can be output to a file.
The file contains the estimated individual-specific predicted values ŷit and/or
individual-specific probabilities P̂m|it, which were defined in equations (28)
and (29). Instead of posterior mean predictions, one can also request HB-like
predictions or model-based predictions.

For Individual Coefficients, the file contains the estimated individual-
specific regression coefficients. Let β̂xq denote the estimated value of one
of the regression coefficients (intercept or predictor effect). The posterior-
mean or expected a posteriori estimate of regression coefficient q for case i is
defined as follows:

β̂iq =
K∑
x=1

P̂ (x|zi,yi) β̂xq (30)

that is, as a weighted average of the Class-specific coefficients. These esti-
mates are similar to the individual coefficients obtained in multilevel, mixed-
effects, random-effects, and hierarchical Bayes (HB) models. The person-
specific coefficients can be used to predict person i’s new responses. The
posterior standard deviations are defined as

σ̂
β̂iq

=

√√√√ K∑
x=1

P̂ (x|zi,yi)
(
β̂xq − β̂iq

)2

Another output-to-file item is Cook’s D (Cook’s Distance). It can be used
to detect influential cases or, more precisely, cases with a large influence on
the parameter estimates. The formula that is used the following:

Ci = −2 g′i H
−1 gi, (31)

where H is the Hessian matrix and gi the vector with the gradient contri-
butions of case i. A typical cut-point for Cook’s D is four times the number
of parameters divided by the number of cases (Skrondal and Rabe-Hesketh,
2004).
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In Step3-Covariate and Step3-Scoring one can write the scoring equations
(the logistic equation for the class memberships) to an SPSS syntax file or
to a more generic syntax that can easily be adapted for other packages.

The last output-to-file item is the Variance-Covariance Matrix of the
model parameters. Dependent of the type of variance estimator that is re-
quested this will be Σ̂standard(ϑ) , Σ̂outer(ϑ), or Σ̂robust(ϑ). Note that also
the variances and covariances involving the omitted categories of the effect
coded nominal variables are reported.
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Part II: Advanced Model Options,
Technical Settings, and Output

Sections

9 Introduction to Part II: Advanced Models

This part of the manual describes the four Advanced options of Latent GOLD
5.1. These are:

1. The Markov submodule for the estimation of the most important types
of latent Markov models,

2. An option for specifying models with continuous latent variables, which
are referred to as continuous factors (CFactors).

3. A multilevel extension of the LC/FM model, which is a model con-
taining group-level continuous latent variables (GCFactors) and/or a
group-level nominal latent variable (GClasses).

4. An option to deal with the sampling design, which yields correct sta-
tistical tests for complex survey sampling designs that deviate from
simple random sampling.

The submodule called Markov can be used for the estimation of many
types of latent Markov models. These are LC models for longitudinal data
in which individuals are allowed to switch between latent classes across mea-
surement occasions. Latent Markov models are also referred to as latent tran-
sition models, hidden Markov models, Markov-switching models, or regime-
switching models. The implementation in Latent GOLD Advanced allows
inclusion of time-constant and time-varying covariates, the specification of
mixture variants, including mover-stayer models, and the use of multiple in-
dicators of different scale types. By using an efficient EM algorithm, Latent
GOLD’s Markov submodule can deal with models for very large numbers of
time points.

The Continuous Factors (CFactors) option can be used to specify factor-
analytic models, item response theory (IRT) models, and random-effects re-
gression models for two-level data, where the same options concerning the
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scale types of the indicators and the dependent variable apply as in other La-
tent GOLD models. One may also combine CFactors with a single nominal
latent variable (Cluster and Regression submodules) or with multiple ordinal
latent variables (DFactor submodule), yielding too many interesting special
cases to be listed here. One example is a standard LC model for categorical
indicators in which local dependencies are captured by a continuous latent
variable. Another example is a LC or FM Regression model, in which the
intercept is allowed to vary within latent classes by including a random inter-
cept in the model. In an IRT or factor-analytic model, one could introduce
latent classes to capture unobserved population heterogeneity in some of the
model parameters.

The Multilevel Model option can be used to define LC and FM models
for nested data, such as employees nested within firms, pupils nested within
schools, clients nested within stores, patients nested within hospitals, citizens
nested within regions, and repeated measurements nested within individuals.
Note that LC and FM models are themselves models for two-level data; that
is, models for multiple responses per case. The multilevel LC (FM) model
is thus, in fact, a model for three-level data; that is, for multiple responses
nested within cases and cases nested within groups. As in any multilevel
analysis, the basic idea of a multilevel LC analysis is that one or more pa-
rameters of the model of interest is allowed to vary across groups using a
random-effects modeling approach. In Latent GOLD, the group-level ran-
dom effects can either be specified to be continuous (group-level continuous
factors: GCFactors) or discrete (group-level latent classes: GClasses), yield-
ing either a parametric or a nonparametric approach, respectively.

One variant of the multilevel LC model involves including group-level
random effects in the model for the latent classes, which is a way to take into
account that groups differ with respect to the distribution of their members
across latent classes (Vermunt, 2003, 2005; Vermunt and Magidson, 2005b).
Not only the intercept, but also the covariate effects may have a random
part. In Cluster and DFactor models, it is also possible to allow GCFactors
and/or GClasses to have direct effects on the indicators. In Regression, one
can include GCFactors and GClasses in the model for the dependent vari-
able. By combining group-level with case-level latent classes, one obtains a
three-level generalized linear model with nonparametric random effects, and
by combining group-level continuous factors with case-level continuous fac-
tors one obtains a standard three-level random-coefficients generalized linear
model (Vermunt, 2002c, 2004).
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The Survey option makes it possible to get correct statistical tests with
stratified and clustered samples, as well as with sampling weights and samples
from finite populations. This option applies to any model that can be esti-
mated with Latent GOLD. The design-corrected variance-covariance matrix
of the model parameters is obtained by the well-known linearization estima-
tor. Sampling weights can also be dealt with using a two-step procedure that
involves estimating the model without sampling weights, and subsequently
correcting the latent class distribution and covariate effects using the sam-
pling weights.

The next four sections describe the four Advanced options in more detail.
Attention is paid to model components, estimation issues, and application
types. The last section discusses the output obtained with the Latent GOLD
Advanced options.

10 Latent Markov Models

The Markov submodule which is part of Latent GOLD 5.1 Advanced can
be used to estimate latent Markov models, including mixture variants and
models with covariates (Bartolucci, et al. 2007, 2013); Kaplan, 2008; Paas,
Vermunt and Bijmolt, 2007; Poulsen, 1982, 1990; Van de Pol and De Leeuw,
1990; Vermunt, Langeheine, and Böckenholt, 1999; Vermunt, Tran, and
Magidson, 2008; Vermunt, 2010;. A latent Markov model is a LC model
for longitudinal data in which persons are allowed to switch between la-
tent classes across measurement occasions. It is also referred to as latent
transition model (Collins and Lanza, 2010; Collins and Wugalter, 1992), hid-
den Markov model (MacDonald and Zucchini, 1997; Visser, 2011), Markov-
switching (Frühwirth-Schnatter, 2009), or regime-switching model (Hamil-
ton, 2008).

Below, we first introduce some notation and describe the simplest latent
Markov model. Then, we describe the general model implemented in Latent
GOLD Advanced, including the use of transition coding for the logit param-
eters of the transition probability model. Subsequently, we present various
constrained models and provide the relevant details on parameter estimation
using the Baum-Welch algorithm.
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10.1 The Simplest Latent Markov Model

To distinguish the dynamic class membership from the static class member-
ship in standard mixture models, we refer to the dynamic classes as latent
states. Let xdt denote the latent state at time point t, where superscript d
refers to dynamic and is used to distinguish this variable from the other types
of latent variables (case- and group-level classes). The time variable t runs
from 0 to Ti, the last measurement occasions for the person concerned.44

Let us first look at a latent Markov model for a single categorical response
variable yit, where the vector collecting the responses of person i at all time
points is denoted by yi. This simple latent Markov model is defined as
follows:

P (yi) =
Kd∑
xd0=1

Kd∑
xd1=1

...
Kd∑
xdT=1

P (xd0)
Ti∏
t=1

P (xdt |xdt−1)
Ti∏
t=0

P (yit|xdt ).

The three sets of probabilities defining this model are the initial state proba-
bilities P (xd0), the transition probabilities P (xdt |xdt−1), and the response prob-
abilities P (yit|xwt ).

The latent Markov model is a constrained LC model with Ti + 1 latent
variables. The two main assumptions of the latent Markov model can be
derived from the above equation. The product

∏Ti
t=1 P (xdt |xdt−1) follows from

the first-order Markov assumption, indicating that the latent state at time
point t depends on the state at t − 1, but not on the states at earlier time
points. The product

∏Ti
t=0 P (yit|xdt ) indicates that the response at time point

t depends on the latent state at this time point, but not on the latent states
or the responses at other time points. The latter assumption is sometimes
referred to as assumption of independent classification errors (ICE).

10.2 The General Mixture Latent Markov with Co-
variates

The general model implemented in Latent GOLD Advanced, expands the
simple latent Markov model in various important ways. It allows inclusion

44Note that in other models, we use t to denote a particular indicator or replication and
T and Ti to denote the number of indicators and the number of replications, implying that
our notation is somewhat inconsistent. However, we prefer using the common notation t
and Ti to refer to the (number of) time points. This means that in Markov other symbols
are needed to denote the (number of) indicators.
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of a mixture variable x (Poulsen, 1990; Van de Pol and Langeheine, 1990),
inclusion of covariates zi (Vermunt, Langeheine, an Böckenholt, 1999), and
having multiple indicators of any of the Latent GOLD scale types (see, for
example, Schmittman et al., 2005). This general model has the following
form

f(yi|zi) =
K∑
x=1

Kd∑
xd0=1

Kd∑
xd1=1

...
Kd∑
xdT=1

P (x|zi)P (xd0|x, zi)
Ti∏
t=1

P (xdt |xdt−1, x, zit)

Ti∏
t=0

f(yit|xdt , x, zit). (32)

As can be seen, here we have four sets of probabilities: P (x|zi) are class
proportions which may depend on time-constant covariates, P (xd0|x, zi) are
initial state probabilities which may depend on classes and time-constant co-
variates, P (xdt |xdt−1, x, zit) are transition probabilities which may depend on
classes and time-varying covariates, and f(yit|xdt , x, zit) are indicator distri-
butions which may depend on latent states, classes, and time-varying covari-
ates.

The distribution of the indicators is modeled in the same way as in Cluster
models, where it should be noted that in the default specification indicators
are assumed to be independent of x and zit and mutually independent given
xdt . The class, initial state, and transition probabilities are modeled using
logistic regression equations. For the classes and initial states, these are a
standard logistic regression models; for the transitions, this can be either a
standard logistic regression model or a model we refer to as a transition logit
model (see option on the Advanced tab). We will not discuss the standard
logistic regression models here, but instead focus on the less common but
very useful transition logit model, which has the following form:

log
P (xdt = s|xdt−1 = r, x, zit)

P (xdt = r|xdt−1 = r, x, zit)
= γxrs0 +

P∑
p=1

γxrsp · zitp,

for r 6= s. As can be seen, we model the logit comparing the probability
of moving from origin state r to destination state s with the probability of
staying in state r, which is what we refer to as a transition logit. The model
has a separate γ parameter for each transition logit, whereas the parameters
for r = s (no transition) are fixed to 0 for identification. Note that this
implies that we use dummy coding for the “response” variable xdt , but with
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a reference category that depends on (changes with) the value of the origin
state xdt−1. We call this type of coding “transition coding”.

In mixture latent Markov models, which are defined with the Advanced
options in the Markov submodule, the γ parameters can be allowed to depend
on the classes x, which is indicated with the index x. Also in the regression
parameters for the initial state probabilities can be allowed to vary across
classes.

10.3 Restrictions

Four types of restricted (mixture) latent Markov models can be defined us-
ing the Advanced options. One important restriction involves defining the
first class to be a stayer class, that is, a class with transition probabilities
restricted to 0. More formally, P (xdt = s|xdt−1 = r, x = 1, zit) = 0 for r 6= s.
This yields what is often referred to as a mover-stayer model. For an appli-
cation, see Magidson, Vermunt, and Tran (2009).

The second restriction involves defining the states to be perfectly related
to one of the categorical indicators (the first one for which Kd = M); that
is, P (yit = m|xdt = s) = 0 for m 6= s. This is a trick to make it possible
to use the Markov submodule for the estimation of simple manifest Markov
models or mixture Markov models. For an application of the latter, see Dias
and Vermunt (2007).

The last two restrictions concern the scale type of the latent state variable.
The ordinal option defines a model with latent states with fixed equidistant
scores which are used to restrict the state-indicator associations, which is
similar to a one-DFactor model. The option order-restricted defines a model
imposing monotonicity restrictions on the state-indicator associations, a re-
striction that is also available in the Cluster submodule (where it is called
order-restricted clusters).

10.4 Parameter Estimation

ML (PM) estimates are found by a combination of EM and Newton Raph-
son iterations. In order to be able to deal with applications involving large
numbers of time points (see, e.g., Ramos, Vermunt, and Dias, 2011), the E
step computations use a generalized version of the forward-backward recur-
sion scheme, also known as the Baum-Welch algorithm, originally proposed
by Baum et al. (1970). Details on this generalized Baum-Welch algorithm,
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which can deal with mixtures, covariates, and multiple response variables,
are provided by Vermunt, Tran, Magidson (2008). For the Newton-Raphson
iterations, analytic first- and second-order derivatives are computed using
the forward recursion scheme described by Lystig and Hughes (2002).

It may be useful for users to know that in developing the Markov submod-
ule, we decided to use the existing Latent GOLD Syntax system to estimate
the Markov models; that is, based on the model specified via point-and-click
GUI, we generate and run the corresponding LG-Syntax model. Therefore,
the output formatting is very similar to that of the Syntax models. Two
differences are that the restricted parameters for the Stayer class and the
Perfect states are not reported in Parameters and that Classes and States
are reordered (from large to small) so that they appear in the same order
when rerunning a model.

11 Continuous Factors

11.1 Model Components and Estimation Issues

Let Fdi denote the score of case i on continuous latent variable, factor, or
random effect d. The total number of CFactors is denoted by D, 1 ≤ d ≤
D, and the full vector of CFactor scores by Fi. The maximum number
of CFactors that can be included in a Latent GOLD model is three, thus
0 ≤ D ≤ 3.

Recall that without CFactors the most general Latent GOLD structure
for f(yi|zi) equals

f(yi|zi) =
K∑
x=1

P (x|zi) f(yi|x, zi),

where

f(yi|x, zi),=
H∏
h=1

f(yih|x, zi).

If we include CFactors in a model, the assumed structure for f(yi|zi) becomes

f(yi|zi) =
K∑
x=1

∫
Fi
f(Fi)P (x|zi) f(yi|x, zi,Fi) dFi, (33)
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where

f(yi|x, zi,Fi) =
H∏
h=1

f( yih|x, zi,Fi)

The Fdi are assumed to be standard normally distributed and mutually in-
dependent. In other words, f(Fi) = N(0, I), where I is the identity matrix.
As will be shown below, this specification is much less restrictive than one
may initially think.

It is also possible to define models – e.g., IRT models or random-effects
regression models – containing CFactors but no latent classes x. That sim-
plifies the structure for f(yi|zi) to

f(yi|zi) =
∫

Fi
f(Fi) f(yi|zi,Fi) dFi,

with

f(yi|zi,Fi) =
H∏
h=1

f( yih|zi,Fi)

Equation (33) shows that the Fdi may appear in the model for the response
variables, but not in the model for the latent classes.45 In Cluster models, this
is accomplished by expanding the linear predictor with the term

∑D
d=1 λ

t
xd·Fdi,

where λtxd denotes the effect of Fdi on indicator yit in latent class x. Note
that for nominal indicators, λtxd is replaced by λtmxd. As can be seen, each
CFactor may be related to each indicator, and these relationships may differ
across latent classes. In the DFactor submodule, the term corresponding to
the CFactors is the same as in Cluster, except that the effects can not be
class dependent.

In the Regression submodule, the linear predictor is expanded with the
term

∑D
d=1 λx0d · Fdi +

∑D
d=1

∑Q
q=1 λxqd · Fdi · z

pred
itq . For nominal dependent

variables, λxqd is replaced by λxmqd (0 ≤ q ≤ Q). As can be seen, Fdi may
have a direct effect on the dependent variable, which makes it possible to
define random-intercept models. The Fdi · zpreditq product term defines a ran-
dom coefficient for the predictor concerned. An important difference with
the more standard specification of random-effects models is that here each
Fdi can serve as random effect for each of the model effects, which, as will
be shown below, can be used to define parsimonious random-effects covari-
ance structures. Another important difference is, of course, that the size of

45There is a trick for including CFactor effects in the model for the latent classes using
the multilevel option.

96



the parameters associated with the random effects may differ across latent
classes.

Model restrictions In both Cluster and DFactor, it is possible to equate
the λ’s across indicators of the same type for selected CFactors (“Equal
Effects”), as well as to fix some of the λ’s to zero. Moreover, in Cluster, the
λ’s may be assumed to be equal across Clusters (“Cluster Independent”).

In Regression, one can use the parameter constraints “Class Indepen-
dent”, “No Effect”, and “Merge Effects”, implying equal λ’s among all Classes,
zero λ’s in selected Classes, and equal λ’s in selected Classes.

ML (PM) estimation and technical settings The main complication
in the ML (PM) estimation of models with CFactors is that we have to
deal with the multidimensional integral appearing in the definition of the
marginal density f(yi|zi) (see equation 33). A closed form expression for
this integral is only available when all response variables are continuous (and
normally distributed). In all other situations, the integrals must be solved
using approximation methods.

In Cluster and DFactor models containing only continuous indicators,
we make use of the fact that the indicators remain multivariate normally
distributed even in models with CFactors, but with a variance-covariance
matrix equal to ΛxΛ

′
x + Σx, where Λx is a T -by-D matrix containing the

factor loadings λtxd. In fact, the marginal density f(yi|zi) has the form of a
standard LC or FM model; that is,

f(yi|zi) =
K∑
x=1

P (x|zi) f(yi|x, zi),

with f(yi|x, zi) = N(µx,zi ,ΛxΛ
′
x + Σx).

In all other cases, Latent GOLD approximates the conditional density
f(yi|zi) by means of Gauss-Hermite numerical integration, implying that the
multidimensional integral is replaced by multiple sums (Bock and Aitkin,
1981). With three CFactors and B quadrature nodes per dimension, the
approximate density equals

f(yi|zi) ≈
K∑
x=1

B∑
b1=1

B∑
b2=1

B∑
b3=1

P (x|zi) f(yi|x, zi, Fb1 , Fb2 , Fb3)Pb1 Pb2 Pb3 .
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Here, Fbd is the location and Pbd the weight corresponding to quadrature
node bd for CFactor d. These nodes and weights are obtained from published
quadrature tables (Stroud and Secrest, 1966). As can be seen, because of the
multiple sums, this approximate density is very similar to the density of a LC
model with multiple latent variables. The above approximation also shows
that – given the fact that one will usually use at least 10 quadrature points per
dimension (Lessafre and Spiessens, 2001) – because of computation burden,
it does not make sense to have models with more than three CFactors.

Similarly to what Latent GOLD does for standard LC and FM models,
the ML (PM) estimation problem for models with CFactors is solved using
a combination of EM and Newton-Raphson with analytic first- and second-
order derivatives.

The only additional technical setting for models with CFactors is the op-
tion for specifying the number of quadrature nodes to be used in the numer-
ical integration. The default value is 10, the minimum 2, and the maximum
50.

11.2 Application Types

11.2.1 Factor analysis

One of the applications of the CFactors option is ML factor analysis with con-
tinuous indicators. The factor-analytic model implemented in Latent GOLD
equals

µt,Fi = βt0 +
D∑
d=1

λtd · Fdi.

Special features are that there may be missing values on the indicators, local
dependencies (correlated errors) among indicators can be included, loadings
may be equated across indicators for selected CFactors (λtd = λd), and Hey-
wood cases are prevented from occurring by nonnegativity constraints on the
error variances (σ2

t ≥ 1.0e−6 · s2
t , were s2

t is the sample variance of indicator
t).

Two limitations of the Latent GOLD factor-analytic model are that CFac-
tors are assumed to be uncorrelated, as well as that there are no rotation
options. The latter means that the solutions must be identified by fixing one
or more factor loadings to zero and/or by equating loadings across indicators
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for selected factors.46

Whereas ML factor analysis can be performed with any structural equa-
tion modeling (SEM) package, the unique feature of Latent GOLD is that
it can be combined with a LC or FM model. This yields what McLachlan
and Peel (2000) refer to as “mixtures of factor analyzers”. This model differs
from the above factor-analytic model in that its parameter may differ across
latent classes or mixture components:

µt,x,Fi = βt0 + βtx0 +
D∑
d=1

λtxd · Fdi.

It should be noted that this is, in fact, a mixture of multivariate normals, in
which the within-Cluster covariances between indicators are assumed to be
in agreement with a factor-analytic structure. As already explained above,
the within-class covariance matrix equals ΛxΛ

′
x + Σx. This shows that the

CFactors option may be used as a tool for defining parsimonious local depen-
dency structures in the context of mixture-model clustering. An even more
parsimonious specification is obtained by assuming that the factor loadings
are class independent; that is, by setting Λx = Λ.

In other applications, one may be interested in the factor-analytic model
itself, and use the LC or FM model as a tool for studying and detecting
unobserved heterogeneity (Yung, 1997).47 In such cases, one would most
probably use a simple confirmatory factor-analytic structure, such as a one-
factor model or a two-factor growth model. Assuming that the T indicators
are measurements of the same variable at T time points, a LC two-factor
growth model is obtained as follows:

µt,x,Fi = βt0 + βtx0 + λx1 · F1i + λtx2 · F2i.

where λx1 captures the inter-individual variation in the intercept and λtx2

the inter-individual variation in the time effect. Note that the loadings
corresponding to the first factor are assumed to be equal across indicators
(λtx1 = λx1).

46When D = 1, no identifying restrictions need to be imposed. With D = 2, one has
to impose one constraint, typically fixing one λt2 to 0. With D = 3, three constraints are
needed, typically fixing one λt2 and two λt3 terms to 0.

47This is the most important special case of the more general framework of mixture
structural equation modeling (Dolan and Van der Maas, 1997; Jedidi, Jagpal, and De-
Sarbo, 1997).
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11.2.2 IRT models

The main difference between factor analysis and IRT modeling is that in
the former response variables are continuous, whereas in the latter they are
discrete (Bartholomew and Knott, 1999). With the Latent GOLD CFac-
tors option, it is possible to obtain (marginal) ML estimates for the most
important types of parametric IRT models for binary, ordinal, and nominal
response variables, as well as for IRT models for mixed responses.48 Note
that if discrete and continuous indicators are mixed, one obtains a hybrid
between factor analysis and IRT, which Moustaki and Knott (2000) called a
generalized IRT model.

The linear term in a univariate IRT model equals

ηtFi = βt0 + λt · Fi,
ηtm,Fi = βtm0 + λt. · y∗tm · Fi,
ηtm,Fi = βtm0 + λtm · Fi,

for dichotomous, ordinal, and nominal responses, respectively, yielding the
two-parameter logistic (Birnbaum, 1968), the generalized partial-credit (Mu-
raki, 1992), and the nominal-response model (Bock, 1972). It should be
noted that the parameterization used in IRT modeling is sometimes a bit
different from the one used here. For example, the two-parameter logistic
model is usually written as

ηtFi = at (Fi − bt),

where bt and at are the difficulty and the discrimination parameter, respec-
tively. These can, however, be obtained easily from the Latent GOLD pa-
rameterization: at = λt and bt = −βt0/λt. By constraining λt = λ (at = a),
one obtains the one-parameter logistic or Rasch model (Rasch, 1980) in the
binary case and the partial-credit model (Masters, 1982) in the ordinal case.49

Latent GOLD can deal with a much more general class of IRT mod-
els than these standard models. First of all, it is possible to increase the
number of dimensions up to three, yielding multidimensional variants of the

48Overviews of the field of parametric IRT modeling can be found in Hambleton and
Swaminathan (1985), Heinen (1996), Mellenbergh (1995), and Van der Linden and Hamil-
ton (1997).

49It is also possible to assume that a = 1 and treat the variance of the latent variable
as an unknown parameter to be estimated (see also discussion on random-effects models).
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IRT models discussed above (Reckase, 1997). Similarly, as explained above
in the context of factor analysis, an appropriately “rotated” solution can
be obtained by fixing certain discrimination parameters (loadings) to zero.
Moreover, contrary to standard IRT models, there is no need to assume that
the indicators are of the same scale type. One can not only combine binary,
ordinal, and nominal responses, but also use continuous indicators or counts,
including their censored and truncated variants. This yields the generalized
IRT model proposed by Moustaki and Knott (2000).

The standard IRT models for dichotomous and nominal variables, can
not only be specified using the Cluster submodule, but also using the Re-
gression submodule. With T items one defines T − 1 item dummies – or
equivalently, a single nominal predictor variable “item number” – that enter
as predictors in a random-effects (logistic) regression model. In fact, the Re-
gression submodule offers a fully general linear-logistic test model that can
take into account multiple item-design factors. For ordinal responses, such
a logistic regression-based IRT model is more restricted than the one speci-
fied with the Cluster submodule because the Latent GOLD ordinal logistic
regression procedure will always imply certain restrictions on the intercept
across replications. These restrictions turn out to yield a restricted variant
of the partial-credit model called the rating-scale model (Andrich, 1978), in
which βtm0 = β.m0 + y∗tm · βt.0.

The unique feature of Latent GOLD is that it allows combining CFac-
tors with latent classes. This yields FM variants of IRT models, such as
the mixed-Rasch model proposed by Rost (1990) and the mixed-Birnbaum
model proposed by Smit, Kelderman, and Van der Flier (2000). The mixed-
Birnbaum model, for example, is defined as

ηtx,Fi = βt0 + βtx0 + λtx · Fi, (34)

whereas the mixed-Rasch model is obtained by assuming that λtx = λx.

11.2.3 Local dependence LC models

Qu, Tan, and Kutner (1996) and Hadgu and Qu (1998) proposed using IRT-
like structures within latent classes in medical applications based on sets
of “symptoms” (yes/no responses). In most of the medical applications of
LC analysis, the method is used to build a two-class diagnostic instrument
distinguishing between normal and abnormal cases. The fact that a two-class
model might not fit the data is either seen as an artifact of the measurement
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instrument (some symptoms are more similar to one another than to the
other ones) or as a result of within-class heterogeneity. It is indeed true
that these two quite related requirements (local independence and within-
class homogeneity) are strong assumptions that may not hold in a simple
two-class model.

To allow for local dependencies and within-class heterogeneity, Qu, Tan,
and Kutner (1996) proposed expanding the standard LC model with a CFac-
tor, yielding what they called a random-effects LC model. The model they
proposed is a binary logistic model with the linear predictor

ηtx,Fi = βt0 + βtx0 + λt · Fi,

which is similar to the mixed-Birnbaum model described in equation (34).
The difference is that here the λt are class independent. More restricted
variants were also defined in which the λt were equated across all items or
across selected sets of items, and in which some λt were equated to zero.

11.2.4 Random-effects models

Another important application of CFactors involves random-effects modeling
using any of the generalized linear models implemented in the Regression sub-
module (Agresti, Booth, Hobert, and Caffo, 2000; Goldstein, 1995; Hedeker,
2003; Hedeker and Gibbons, 1996; Snijders and Bosker, 1999; Skrondal and
Rabe-Hesketh, 2004; McFadden and Train, 2000; Wong and Mason, 1985).50

Let us first look at the random intercept model. Denoting the random
part of the intercept by Ψ0i, the linear predictor in a random-intercept model
for either binary, continuous, or count responses would be of the form:

ηzit,Ψ0i
= β0 +

Q∑
q=1

βq · zpreditq + Ψ0i.

The parameters to be estimated are not only the fixed effects βq (0 ≤ q ≤ Q),
but also the variance of the random effect Ψ0i, denoted as σ2

Ψ0
. However,

Latent GOLD uses a somewhat different (factor-analytic) parameterization
of the same random-intercept model; that is,

ηzit,F1i
= β0 +

Q∑
q=1

βq · zpreditq + λ01 · F1i. (35)

50Random-effects models are also referred to as multilevel, hierarchical, mixed-effects,
mixed, and random-coefficients models.
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On the one hand, the variance of latent variable F1i is fixed to 1, but on the
other hand it has an effect parameter λ01 associated with it. The connection
between the two parameterizations is rather simple: σ2

Ψ0
= (λ01)2, which

means that λ01 can be interpreted as the standard deviation of the random
intercept.

For ordinal and nominal responses, the random intercept model has the
following form:

ηm,zit,F1i
= βm0 +

Q∑
q=1

β.q · y∗m · z
pred
itq + λ01 · y∗m · F1i,

ηm,zit,F1i
= βm0 +

Q∑
q=1

βmq · zpreditq + λm01 · F1i.

Note that for nominal variables, a single CFactor is used to capture the
variation in each of the M − 1 intercept terms, yielding the random-effects
multinomial logistic regression model proposed by Hedeker (2003).

The models described above can be expanded to include random slopes
in addition to a random intercept. However, a slight complication is that one
has to decide whether the multiple random effects should be uncorrelated or
not. For uncorrelated random effects, expanding the model of equation (35)
with a random slope for the first predictor yields

ηzit,Fi = β0 +
Q∑
q=1

βq · zpreditq + λ01 · F1i + λ12 · F2i · zpredit1 .

The variances of the random intercept and the random slope for zpredit1 equal
σ2

Ψ0
= (λ01)2 and σ2

Ψ1
= (λ12)2, respectively.

The same model, but now with correlated random effects can be defined
as follows:

ηzit,Fi = β0 +
Q∑
q=1

βq · zpreditq + λ01 · F1i + λ02 · F2i + λ12 · F2i · zpredit1 .

As can be seen, here F2i does not only affect the effect of zpredit1 , but also the
intercept. Now, ΣΨ, the variance-covariance matrix of the random effects,
has to be obtained by ΣΨ = Λ Λ′, where Λ is a matrix collecting the λqd
parameters. More specifically, in our example, σ2

Ψ0
= (λ01)2 + (λ02)2, σ2

Ψ1
=

(λ12)2, and σΨ0,Ψ1 = λ02 · λ12.
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An alternative formulation is

ηzit,Fi = β0 +
Q∑
q=1

βq · zpreditq + λ01 · F1i + λ11 · F1i · zpredit1 + λ12 · F2i · zpredit1 ,

in which F1i also affects the predictor effect. Again ΣΨ = Λ Λ′. It should be
noted that Λ is in fact the Cholesky decomposition of ΣΨ, which is the matrix
transforming N(0, I) random variables into N(0,ΣΨ) random variables; that
is, Ψi = Λ Fi.

Whereas the random-effects models presented so far contained as many
CFactors as random effects, this does not mean that this is necessarily the
case. In fact, with three CFactors – the Latent GOLD maximum – one can
define models with any number of random effects. This is accomplished with
the following “factor-analytic” specification:

ηzit,Fi = β0 +
Q∑
q=1

βq · zpreditq +
3∑
d=1

λ0d · Fdi +
3∑
d=1

Q∑
q=1

λqd · Fdi · zpreditq , (36)

where again ΣΨ = Λ Λ′. This “factor-analytic” specification in which each
CFactor may be associated with multiple random effects is equivalent to
the generalized random coefficient (GRC) formulation proposed by Skrondal
and Rabe-Hesketh (2004, p. 101). In fact, it is assumed that the unobserved
heterogeneity in the regression coefficients can be summarized by three un-
derlying CFactors.

11.2.5 Random-intercept model with covariates

Suppose you wish to regress a random intercept term on a set of covariates.
This would imply that F1i = α0+

∑R
r=1 αr · zcovir + ε1i. Although there is no

special option in Latent GOLD for defining regression models for CFactors,
substitution into the model described in equation (35) yields

ηzit,F1i
= β0 +

Q∑
q=1

βq · zpreditq + λ01 · (α0 +
R∑
r=1

αr · zcovir + ε1i)

= β0 +
Q∑
q=1

βq · zpreditq + λ01 · α0 +
R∑
r=1

λ01 · αr · zcovir + λ01 · ε1i

= β∗0 +
Q∑
q=1

βq · zpreditq +
R∑
r=1

α∗r · zcovir + λ01 · ε1i.
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This shows that regressing F1i on covariates is equivalent to using the zcovir
as additional predictors in the regression model for the dependent variable.
The original covariate effects αr equal α∗r/λ01. Moreover, (λ01)2 is no longer
the total variance of F1i, but the variance of the error in the regression of F1i

on zcovir . The total variance of F1i can, of course, be determined in a model
without covariates.

The above specification can also be used to specify the Rasch model with
covariates proposed by Zwinderman (1991). As already explained above, a
Rasch model for T items can be specified as a LC Regression model in which
T − 1 item dummies are used as predictors.

11.2.6 LC (FM) regression models with random effects

The unique feature of Latent GOLD is that it allows you to combine ran-
dom effects with latent classes. More specifically, it is possible to specify
LC Regression models in which the intercept and/or some of the regression
coefficients vary within latent classes. Lenk and DeSarbo (2000) proposed
using random effects in FMs of generalized linear models, Böckenholt (2001)
proposed using random effects in LC Regression models for ranking data,
and Muthén (2004) and Vermunt (2007) proposed including random effects
in LC growth models.

It has been observed that the solution of a LC Regression analysis may be
strongly affected by heterogeneity in the intercept. In rating-based conjoint
studies, for example, it is almost always the case that respondents differ with
respect to the way they use the, say, 7-point rating scale: some respondents
tend to give higher ratings than others, irrespective of the characteristics of
the rated products. A LC Regression model captures this response hetero-
geneity phenomenon via Classes with different intercepts. However, most
likely, the analyst is looking for a relatively small number of latent classes
that differ in more meaningful ways with respect to predictor effects on the
ratings. By including a random intercept in the LC Regression model, for
example,

ηm,x,zit,F1i
= βxm0 +

Q∑
q=1

βx.q · y∗m · z
pred
itq + λx01 · y∗m · F1i,

it is much more likely that one will succeed in finding such meaningful Classes
(segments). The random intercept, which may have a different effect in each
latent class, will filter out (most of) the “artificial” variation in the intercept.
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Another interesting application of random effects within latent classes
occurs in the context of LC growth modeling (Muthén, 2004; Vermunt, 2007).
Suppose we have a model for a binary response variable measured at T
occasions in which zpredit1 equals time and zpredit2 time squared. A LC growth
model with a random intercept and a random slope for the linear time effect
would be of the form:

ηx,zit,Fi = βx0 + βx1 · zpredit1 + βx2 · zpredit2 + λ01 · F1i + λ02 · F2i + λ12 · F2i · zpredit1 ,

where we assume that the β parameters are Class dependent and λ parame-
ters Class independent. Similarly, LC growth models can be formulated for
dependent variables of other scale types.

12 Multilevel LC Model

12.1 Model Components and Estimation Issues

To be able to explain the multilevel LC model implemented in Latent GOLD,
we have to introduce and clarify some terminology. Higher-level observa-
tions will be referred to as groups and lower-level observations as cases. The
records of cases belonging to the same group are connected by the Group ID
variable. It should, however, be noted that higher-level observations can also
be individuals, for example, in longitudinal applications. “Cases” would then
be the multiple time points within individuals and replications (or indicators)
the multiple responses of an individual at the various time points.

The index j is used to refer to a particular group and Ij to denote the
number of cases in group j. With yjit we denote the response on indicator
(at replication) t of case i belonging to group j, with yji the full vector of
responses of case i in group j, and with yj the responses of all cases in group
j. Rather than expanding the notation with new symbols, group-level quan-
tities will be referred to using a superscript g: Group-level classes (GClasses),
group-level continuous factors (GCFactors), and group-level covariates (GCo-
variates) are denoted by xg, Fg

j , and zgj , and group-level parameters by γg,
βg, and λg.

The most general Latent GOLD probability structure for a multilevel LC
model equals

f(yj|zj, zgj ) =
Kg∑
xg=1

∫
Fgj

f(Fg
j )P (xg|zgj ) f(yj|zj, xg,Fg

j ) dFg
j , (37)
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where

f(yj|zj, xg,Fg
j ) =

Ij∏
i=1

f(yji|zji, xg,Fg
j ).

Assuming that the model of interest may also contain CFactors, for each case
i, f(yji|zji, xg,Fg

j ) has a structure similar to the one described in equation
(33); that is,

f(yji|zji, xg,Fg
j ) =

K∑
x=1

∫
Fji
f(Fji)P (x|zji, xg,Fg

j ) f(yji|x, zji,Fji, x
g,Fg

j ) dFji.

where

f(yji|x, zji,Fji, x
g,Fg

j ) =
H∏
h=1

f(yjih|x, zji,Fji, x
g,Fg

j )

These four equations show that a multilevel LC model is a model

• for f(yj|zj, zgj ), which is the marginal density of all responses in group
j given all exogenous variable information in group j,

• containing GClasses (xg) and/or (at most three mutually independent)
GCFactors (Fg

j ),

• containing GCovariates zgj affecting the group classes xg,

• assuming that the Ij observations for the cases belonging to group j
are independent of one another given the GClasses and GCFactors,

• allowing the GClasses and GCFactors to affect the case-level latent
classes x and/or the responses yji.

GCFactors enter in exactly the same manner in the linear predictors for
the various types of response variables as case-level CFactors. We will refer to
their coefficients as λt,gd (Cluster and DFactor) and λgxqd (Regression), where
we add a subscript m when needed. GCFactors can also be used in the
model for the latent classes. These terms are similar to those for nominal
(Cluster and Regression) or ordinal (DFactor) dependent variables. We will
denote a GCFactor effect on the latent classes as λ0,g

xrd, 0 ≤ 1 ≤ R, where the
superscript 0 refers to the model for the latent classes.

GClasses enter in the linear predictors of the models for the indica-
tors as βt,gxg and in the one of the model for the dependent variable as
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βgx0,xg +
∑Q
q=1 β

g
xq,xg ·zpredjitq . Inclusion of GClasses in the model for the Clusters,

DFactors, or Classes implies that the γ parameters become GClass depen-
dent; that is ηx|zji,xg = γxg ,x0 +

∑R
r=1 γxg ,xr · zcovjir . Note that this is similar to

a LC Regression analysis, where xg now plays the role of x, and x the role of
a nominal or ordinal y variable.

The remaining linear predictor is the one appearing in the multinomial
logistic regression model for the GClasses. It has the form ηxg |zgi = γgxg ,0 +∑Rg

r=1 γ
g
xg ,r ·zg,covjr . This linear predictor is similar to the one for the Clusters or

Classes (in a standard LC model), showing that GCovariates may be allowed
to affect GClasses in the same way that covariates may affect Classes.

Below we will describe the most relevant special cases of this very general
latent variable model,51 most of which were described in Vermunt (2002b,
2003, 2004, and 2005) and Vermunt and Magidson (2005b). We then devote
more attention to the expressions for the exact forms of the various linear
predictors in models with GClasses, GCFactors, and GCovariates.

Model restrictions Both in Cluster and in DFactor models, one can
equate the λ’s are across indicators of the same type for selected CFactors
(“Equal Effects”) and/or fix some of the λ’s to zero. The same applies to
the β’s corresponding to the GClasses.

In Regression, one can use the parameter constraints “Class Indepen-
dent”, “No Effect”, and “Merge Effects”, implying equal λ’s (β’s) among
all Classes, zero λ’s (β’s) in selected Classes, and equal λ’s (β’s) in selected
Classes.

ML (PM) estimation and technical settings Similar to what was dis-
cussed in the context of CFactors, with GCFactors, the marginal density
f(yj|zj) described in equation (37) is approximated using Gauss-Hermite
quadrature. With three GCFactors and B quadrature nodes per dimension,
the approximate density equals

f(yj|zj, zgj ) ≈
Kg∑
xg=1

B∑
b1=1

B∑
b2=1

B∑
b3=1

P (xg|zgj ) f(yj|zj, xg, F g
b1
, F g

b2
, F g

b3
)P g

b1
P g
b2
P g
b3
.

51In fact, the multilevel LC model implemented in Latent GOLD is so general that many
possibilities remain unexplored as of this date. It is up to Latent GOLD Advanced users
to further explore its possibilities.
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ML (PM) estimates are found by a combination of the upward-downward
variant of the EM algorithm developed by Vermunt (2003, 2004, 2008a) and
Newton-Raphson. The first- and second-order derivatives for the Newton-
Raphson iterations are obtained analytically using a recursion scheme similar
to the one described by Lystig and Hughes (2002) for latent Markov models.

The only additional technical setting in multilevel LC models is the same
one as in models with CFactors; that is, the setting related to the number
of quadrature nodes to be used in the numerical integration concerning the
GCFactors. As already explained in the context of models with CFactors,
the default value is 10, the minimum 2, and the maximum 50.

12.2 Application Types

12.2.1 Two-level LC or FM model

The original multilevel LC model described by Vermunt (2003) and Vermunt
and Magidson (2005b) was meant as a tool for multiple-group LC analysis
in situations in which the number of groups is large. The basic idea was
to formulate a model in which the latent class distribution (class sizes) is
allowed to differ between groups by using a random-effects approach rather
than by estimating a separate set of class sizes for each group – as is done in
a traditional multiple-group analysis.

When adopting a nonparametric random-effects approach (using GClasses),
one obtains the following multilevel LC model:

f(yj) =
Kg∑
xg=1

P (xg)

 Ij∏
i=1

K∑
x=1

P (x|xg)
T∏
t=1

f(yjit|x)

 ,
in which the linear predictor in the logistic model for P (x|xg) equals ηx|xg =
γxg ,x0. Here, we are in fact assuming that the intercept of the model for the
latent classes differs across GClasses.

When adopting a parametric random-effects approach (GCFactors), one
obtains

f(yj) =
∫ ∞
−∞

f(F g
1j)

 Ij∏
i=1

K∑
x=1

P (x|F g
1j)

T∏
t=1

f(yjit|x)

 dF g
1j,

where the linear term in the model for P (x|F g
1j) equals ηx|F g1j = γx0+λ0,g

x01 ·F
g
1j.

Note that this specification is the same as in a random-intercept model for
a nominal dependent variable.
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Vermunt (2005) expanded the above parametric approach with covariates
and random slopes, yielding a standard random-effects multinomial logistic
regression model, but now for a latent categorical outcome variable. With
covariates and multiple random effects, we obtain

f(yj|zj) =
∫

Fgj

f(Fg
j )

 Ij∏
i=1

K∑
x=1

P (x|zji,Fg
j )

T∏
t=1

f(yjit|x)

 dFg
j ,

where the linear predictor for x equals

ηx|zji,F
g
j

= γx0 +
R∑
r=1

γxr · zcovjir +
Dg∑
d=1

λ0,g
x0d · F

g
dj +

Dg∑
d=1

R∑
r=1

λ0,g
xrd · F

g
dj · zcovjir ,

Whereas in the Cluster and Regression submodules, this is a random-effects
multinomial logistic regression model, in the DFactor submodule, we use
a random-effects ordinal logistic regression model for each of the discrete
ordinal factors.

Also when adopting a nonparametric random-effects approach, one may
include covariates in the multilevel LC model; that is,

ηx|zji,xg = γxg ,x0 +
R∑
r=1

γxg ,xr · zcovjir .

This yields a model for the latent classes in which the intercept and the
covariate effects may differ across GClasses. In fact, we have a kind of LC
Regression structure in which the latent classes serve as a nominal dependent
variable and the GClasses as latent classes.

An important extension of the above nonparametric multilevel LC models
is the possibility to regress the GClasses on group-level covariates. This part
of the model has the same form as the multinomial logistic regression model
for the Clusters or Classes in a standard LC or FM model.

In the Cluster and DFactor submodules, it is possible to allow GCFactors
and/or GClasses to have direct effects on the indicators. As suggested by
Vermunt (2003), this is a way to deal with item bias. Below, we will discuss
various other applications of this option.

12.2.2 LC (FM) regression models for three-level data

Another application type of the Latent GOLD multilevel LC option is three-
level regression modeling (Vermunt, 2004). This application type concerns
the Regression submodule.
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A three-level LC (FM) Regression model would be of the form

f(yj|zj) =
Kg∑
xg=1

P (xg)

 Ij∏
i=1

K∑
x=1

P (x)
Ti∏
t=1

f(yjit|x, zpredjit , x
g)

 .
Suppose we have a LC Regression model for a binary outcome variable. The
simplest linear predictor in a model that includes GClasses would then be

ηzjit,x,xg = βx0 +
Q∑
q=1

βxq · zpredjitq + βg0,xg ,

which is a model in which (only) the intercept is affected by the GClasses. A
more extended model is obtained by assuming that also the predictor effects
vary across GClasses; that is,

ηzjit,x,xg = βx0 +
Q∑
q=1

βxq · zpredjitq + βg0,xg +
Q∑
q=1

βgq,xg · zpredjitq .

In practice, it seems to be most natural to allow effects of predictors that
change values across replications to be Class dependent and effects of pre-
dictors that change values across cases to depend on the GClasses.

The most extended specification is obtained if all the effects are assumed
to be Class dependent, which implies including Classes-GClasses (x-xg) in-
teractions. Such a model is defined as

ηzjit,x,xg = βx0 +
Q∑
q=1

βxq · zpredjitq + βgx0,xg +
Q∑
q=1

βgxq,xg · zpredjitq .

It should be noted that in each of the above three models, identifying con-
straints have to be imposed on the parameters involving the GClasses. In
the most general model, this is

∑Kg

xg=1 β
g
xq,xg = 0, βgxq1 = 0, or βgxqKg = 0, for

0 ≤ q ≤ Q and 1 ≤ x ≤ K. In other words, the parameters in the model for
the dependent variable either sum to zero across GClasses, are equal to zero
for the first GClass, or are equal to zero for the last GClass.

12.2.3 Three-level random-effects GLMs

Combining the GCFactors from the multilevel model with the CFactors op-
tion makes it possible to specify “standard” three-level GLM regression mod-
els with parametric random effects (Im and Gionala, 1988; Skrondal and
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Rabe-Hesketh, 2004; Rodriguez and Goldman, 2001; Vermunt, 2002c, 2004).
In terms of probability structure, this yields:

f(yj|zj) =
∫

Fgj

f(Fg
j )

 Ij∏
i=1

∫
Fji
f(Fji)

Ti∏
t=1

f(yjit|zpredjit ,Fji,F
g
j )dFji

 dFg
j .

The simplest special case is obtained by assuming that the regression model
contains random intercepts at both the case and the group level. Taking
again a binary logistic regression model as an example, the corresponding
linear predictor equals

ηzjit,F1ji,F
g
1j

= β0 +
Q∑
q=1

βq · zpredjitq + λ01 · F1ji + λg01 · F
g
1j.

Such a model containing a single CFactor and a single GCFactor will suffice
in most three-level random-effects applications. However, similarly to the
random effects models discussed in the context of the CFactors option, this
model can be expanded with random slopes at both levels using the factor-
analytic random-effects specification illustrated in equation (36).

12.2.4 LC growth models for multiple indicators or nested data

Suppose one has a longitudinal data set containing multiple indicators (re-
sponse variables) for each time point. The multiple responses could be used
to build a time-specific latent classification, while the pattern of (latent)
change over time could be described using a (LC) growth model. Specifi-
cation of such a model would involve using the index i for the time points
and the index j for the cases (time points are nested within cases). The LC
model for the time points may have the form of a LC Cluster model, but also
of one of the other types of Latent GOLD models. The multinomial logistic
regression model for the (time-specific) latent classes will have the form of
a LC growth model: class membership depends on time, where the inter-
cept and possibly also the time slope is allowed to vary across individuals.
This variation can be modelled using continuous random effects (GCFactors)
and/or discrete random effects (GClasses).

Palardy and Vermunt (2009) describe a latent growth model for multilevel
data sets. Higher-level units (schools) are assumed to belong to group-level
latent classes which differ in the growth trajectories of their pupils. The
growth model for the pupils contains a random intercept and a random slope.
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12.2.5 Various IRT applications

Several authors have proposed multilevel extensions of IRT models (Fox and
Glas, 2001; Skrondal and Rabe-Hesketh, 2004). A possible specification of a
multilevel IRT model is

ηtFji,F gj = βt0 + λt · Fji + λt,g · F g
j ,

which besides the lower-level trait Fji contains a higher-level (group-level)
trait or random effect F g

j . This is an example of a two-level two-parameter
logistic model. A two-level Rasch model would be of the form

ηtFji,F gj = βt0 + λ · Fji + λg · F g
j .

Tay, Diener, Drasgow, and Vermunt (2011), Varriale and Vermunt (2012),
and Vermunt (2008b) describe multilevel IRT models (and factor models for
categorical responses) with group-level classes.

A strongly related type of IRT model that can be defined with the La-
tent GOLD multilevel option is the state-trait model for ordinal variables
described by Steyer and Partchev (2001). This is, in fact, a two-level IRT
model for repeated measures data (i indexes occasions and j cases). Assum-
ing that there are two underlying traits, their state-trait model for ordinal
responses has the following form:

ηtm,Fji,F gj = βtm0 + λt. · y∗tm · Fji + λt,g.1 · y∗tm · F
g
1j + λt,g.2 · y∗tm · F

g
2j,

where Fji is the time-specific latent state variable and F g
1j and F g

2j are two
time-constant latent trait variables. This model is, in fact, a two-level variant
of the generalized partial-credit model. More restricted models can be defined
by assuming, as in a partial-credit model, that the λ parameters are equal
across items and/or, as in a rating-scale model, that the intercept has form
βtm0 = β.m0 + βt.0 · y∗tm.

In the state-trait model, the latent state variable captures local dependen-
cies between the responses at the same occasion. The same type of structure
can be used to deal with other types of situations in which item belonging
to the same set cannot be assumed to be locally independent, such as items
belonging to the same booklet of a test.
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12.2.6 Non multilevel models

The last possible use of the multilevel option we would like to mention does
not yield a multilevel model, but is a trick for estimating models that cannot
be estimated in another way. The trick consists of using a Group ID variable
that is identical to the Case ID or, equivalently, to have groups consisting of
no more than one case. GCFactors can then be used as CFactors. This makes
it possible to define models in which CFactors – for example, continuous traits
or factors measured by multiple indicators – affect the latent classes. Another
possibility is to use the GClasses as an additional case-level nominal latent
variable, yielding a model in which one nominal latent variable may affect
another nominal latent variable.

13 Complex Survey Sampling

The Survey option makes it possible to obtain consistent parameter estimates
and correct standard errors with complex sampling designs. The option can
be used in combination with any model that can be estimated with Latent
GOLD. Parameter estimation is based on the so-called pseudo-ML estimator
that uses the sampling weights as if it were case weights. Correct statistical
tests with stratified and clustered samples, as well as with sampling weights
and samples from finite populations are obtained using the linearization vari-
ance estimator.

Latent GOLD also implement an alternative method to deal with sam-
pling weights. This is a two-step procedure in which the model is first es-
timated without making use of the sampling weights, and in which subse-
quently the latent class sizes and covariate effects are corrected using the
sampling weights.

13.1 Pseudo-ML Estimation and Linearization Esti-
mator

The survey option can be used to take into account the fact that cases may

1. belong to the same stratum,

2. belong to the same primary sampling unit (PSU), often referred to as
a sampling cluster,
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3. contain a sampling weight,

4. be sampled from a finite population.

Let o denote a particular stratum, c a particular PSU in stratum o, and
i a particular case in PSU c of stratum o. Moreover, let O be the number of
strata, Co the number of PSUs in stratum o, and Ioc the number of cases in
PSU c of stratum o. The sampling weight corresponding to case i belonging
to PSU c of stratum o is denoted by swoci, and the population size (total
number of PSUs) of stratum o by No.

52

From this notation, it can be seen that PSUs are nested within strata,
and that cases are nested within PSUs. In other words, records with the
same Case ID should belong to the same PSU, and all records with the same
PSU identifier should belong to the same stratum. The population size No

indicates the population number of PSUs in stratum o, and should thus have
the same value across records belonging to the same stratum. Another thing
that should be noted is that in multilevel models, the strata, PSUs, and
sampling weights concern groups rather than cases; that is, one has strata
and PSUs formed by groups and sampling weights for groups.

For parameter estimation, only the sampling weights need to be taken into
account. When sampling weights are specified, Latent GOLD will estimate
the model parameters by means of pseudo-ML (PM) estimation (Skinner,
Holt, and Smith, 1989). Recall that ML estimation involves maximizing

logL =
I∑
i=1

wi log f(yi|zi,ϑ),

where wi is a case weight. In pseudo-ML estimation, one maximizes

logLpseudo =
O∑
o=1

Cc∑
c=1

Ioc∑
i=1

swoci log f(yoic|zoic,ϑ),

which is equivalent to maximizing logL using the sampling weights as if
it were case weights. In Latent GOLD one may also have both case and
sampling weights, in which case we get

logLpseudo =
O∑
o=1

Cc∑
c=1

Ioc∑
i=1

woci · [swoci log f(yoic|zoic,ϑ)] ,

52In Latent GOLD, one can either specify the fraction Co

No
or the population size No. If

the specified number in “Population Size” is smaller than 1 it is interpreted as a fraction,
otherwise as a population size.
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which is equivalent to performing ML estimation using the swoci · woci as
“case” weights.

Each of the four complex sampling characteristics is taken into account
by the so-called linearization estimator of variance-covariance matrix of the
parameter estimates (Skinner, Holt, and Smith, 1989). Application of this
method in the context of FM and LC models was proposed by Vermunt
(2002b) and Wedel, Ter Hofstede, and Steenkamp (1998). The overall struc-
ture of Σ̂survey(ϑ) is similar to the robust or sandwich estimator Σ̂robust(ϑ)
discussed earlier; that is,

Σ̂survey(ϑ) = Ĥ−1 B̂ Ĥ−1.

As can be seen, a matrix B is “sandwiched” between the inverse of the
Hessian matrix. For the computation of B, one needs two components: the
contribution of PSU c in stratum o to the gradient of parameter k, denoted by
gock, and its sample mean in stratum o, denoted by gok. These are obtained
as follows:

gock =
Ioc∑
i=1

swoci
∂ log f(yoci|zoci, ϑ)

∂ϑk

and

gok =

∑Co
c=1 gock
Co

Using these two components, element Bkk′ of B can be defined as

Bkk′=
O∑
o=1

Co
Co − 1

(1− Co
No

)
Co∑
c=1

(gock − gok)(gock′ − gok′).

Note that if we neglect the finite population correction factor (1−Co
No

), B is the
sample covariance matrix of the PSU-specific contributions to the gradient
vector.

Various observations can be made from the formula for Bkk′ . The first is
that without complex sampling features (one stratum, single case per PSU,
no sampling weights, and Co

No
≈ 0), the above procedure yields Σ̂robust(ϑ),

which shows that Σ̂survey(ϑ) does not only take into account the sampling
design, but is also a robust estimator of Σ(ϑ). Second, the fact that gradient
contributions are aggregated for cases belonging to the same PSU shows that
the PSUs are treated as the independent observational units, which is exactly
what we want. Third, the term Co

Co−1
is only defined if each stratum contains
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at least two PSUs: Latent GOLD “solves” this problem by skipping strata
for which Co = 1, which implies the single PSU has a contribution of 0 to the
covariance of the gradients. A common solution to this problem is to merge
strata.53

The design effect corresponding to a single parameter equals the ratio
of its design corrected variance and its variance assuming simple random
sampling. A multivariate generalization is obtained as follows (Skinner, Holt,
and Smith, 1989):

deff = tr
[
Σ̂standard(ϑ)−1Σ̂survey(ϑ)

]
/ npar

= tr
[
(− Ĥ) Ĥ−1 B̂ Ĥ−1

]
/ npar = tr

[
− B̂ Ĥ−1

]
/ npar,

where “tr” is the trace operator. The generalized design effect is thus the
average of the diagonal elements of −B̂ Ĥ−1. Note that this number equals
the average of the eigenvalues of this matrix.

13.2 A Two-step Method

Latent GOLD also implements an alternative two-step method for dealing
with sampling weights in LC analysis, which was described in Vermunt and
Magidson (2001) and Vermunt (2002b). The procedure involves performing
an unweighted analysis followed by a weighted analysis in which the parame-
ters in the model part for the response variables are fixed to their unweighted
ML (PM) estimates. More specifically, in step two, the class sizes and the
covariates effects are adjusted for the sampling weights. The adjusted log-
likelihood function that is maximized equals

logLadjusted =
I∑
i=1

swi log
K∑
x=1

P (x|zi,ϑadjusted) f(yi|x, zi, ϑ̂ML),

where ϑadjusted are the unknown parameters to be estimated.
The rationale of this procedure is that an unweighted analysis may yield

more stable (more efficient) estimates for the parameters defining the latent
classes, but yields biased class sizes and covariate effects. The latter are
corrected in the second step of the procedure.

53LG-Syntax implements two other ways of dealing with this problem.
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14 Latent GOLD’s Advanced Output

This section describes the changes and additional items in the Latent GOLD
output sections when the Advanced options are used.

14.1 Model Summary

For Markov models, the first part of the Model Summary output reports the
total number time points (aggregated over all cases;

∑I
i wiTi) in addition to

the number of cases. For multilevel models, it also reports the number of
groups (J). When the Survey option is used, the program reports the gener-
alized design effect (deff), which is an overall measure indicating how many
times larger the design corrected variances are compared to the asymptotic
variances.

For multilevel models, Chi-squared Statistics are not reported and the
bootstrap L2 and −2LL-difference options are not available (the latter is
available in Syntax). When the Survey option is used, the bootstrap-based
L2 and LL-difference tests are corrected for the complex sampling design by
multiplying the bootstrap replications’ L2 and −2LL-difference values by the
generalized design effect deff . Note that the bootstrap replication samples
themselves are obtained by simple random sampling.

In multilevel models, as in all other Latent GOLD models, the number of
cases serves as N (sample size) in the computation of the BIC, CAIC, and
SABIC values that appear in the Log-likelihood Statistics. However, as shown
by Lukociene and Vermunt (2010), and Lukociene, Varriale, and Vermunt
(2010), in multilevel LC models it is better to use the number of groups in
the information criteria formulae. Therefore, we also provide versions of BIC,
CAIC and SABIC based on the log-likelihood using Ngroups (=J) as the
sample size.

The Classification Statistics contain information on how well one can
predict an individual’s State membership and CFactor scores and a group’s
GClass membership and GCFactor scores. For States and GClasses, one
obtains the same information as for the latent classes (proportion of classi-
fication errors and three R2 measures). For CFactors and GCFactors, one
obtains only the standard R2, which can be interpreted as a reliability mea-
sure. In Markov and multilevel models with covariates, Model Classification
Statistics will contain information for the States and GClasses. The pro-
gram reports a Classification Table for each discrete latent variable in the
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model, thus also for the States and Classes in Markov models and the group-
level Classes in multilevel models. Tables for both modal and proportional
classification are given.

The computation of Entropy is adapted for Markov and multilevel LC
models. It is obtained by adding up the separate entropy values for the
GClasses, the Classes, Clusters, or DFactors, and the States, which means
that we ignore the dependencies between the latent variables belong to dif-
ferent levels. CL, CLC, AWE, and ICL-BIC are computed using this
definition of the total entropy.

The Prediction Statistics are the same as in models without CFactors,
GClasses, and GCFactors. The R2

y measures indicates how well a model
predicts the dependent variable given all predictors, covariates, and latent
variables.

14.2 Parameters

This section reports the parameters corresponding to CFactors, GClasses,
and GCFactors. In Cluster and DFactor models, CFactors, GClasses, and
GCFactors can be included in the Models for Indicators. In Regression mod-
els, CFactors, GClasses, and GCFactors effects may appear in the Model for
Dependent.

In multilevel models, GClasses and GCFactors may be used in the Model
for Clusters, DFactors, or Classes. When GClasses affect a particular term
(the intercept or a covariate effect), one obtains a separate set of coefficients
for each GClass. GCFactors enter as random effects in the regression model
for the discrete latent variable(s).

In models with GClasses, the parameters output contains the coefficients
of the multinomial logistic regression Model for GClasses.

The reported Class-specific R2
y|x measures in Regression are obtained by

averaging the predicted values over the other latent variables included in the
model. This is the reason that in a one-Class model, the “Class-specific” R2

y|1
may be lower that the overall R2

y.
When the Survey option is used, one obtains design corrected standard

errors and Wald statistics.
In Cluster and DFactor models, CFactors, GClasses, and GCFactors ap-

pear in the subsection Loadings. For continuous indicators and continuous
latent variables, these are standardized regression coefficients. In all other
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cases, these are linear approximations as described in Magidson and Vermunt
(2004) and Vermunt and Magidson (2005a).

In Regression models with CFactors, one obtains an output subsection
called Random Effects. This subsection provides the CFactor effects Λ and
the variance-covariance matrix of the random effects, ΣΨ = Λ Λ′.

In Markov models, the program reports the parameters for the models
for the classes (if Classes>1), the initial state, the transitions (by default
using transition coding), and the indicators. The formatting of this output
is somewhat different from the other GUI submodules, because internally
we use the Latent GOLD Syntax system to estimate Markov models. The
Parameters output formatting is therefore the same as in Syntax models.

14.3 Profile

The Profile output section reports exactly the same information as in non-
advanced models. In models in which CFactors, GClasses, and/or GCFactors
have a direct effect on one or more indicators, the Marginal Profile is obtained
by aggregating over these latent variables (integrating over CFactors and GC-
Factors, and summing over GClasses). It such situations, the numbers in the
Partial Profile are obtained at the value 0 for the CFactors and GCFactors,
and – as for other nominal variables having direct effects on the indicators –
at the (unweighted) average of the GClasses coefficients concerned.

For Markov models, in addition to the Class sizes and the indicator
information conditional of Classes and States, Profile reports the average
latent State proportions across measurement occasions (marginalized over
classes and covariates), the average State probabilities conditional on Class
(marginalized over covariates), and the latent transition probabilities (marginal-
ized over classes and covariates). The Partial Profile output is not available
in Markov models. Moreover, in Markov models, Profile does not contain
information on Covariates.

14.4 GProfile

The first part of this output section reports the sizes of the GClasses [P (xg)]
and the probability of being in a certain latent class or DFactor level for each
GClass [P (x|xg) or P (x`|xg)].

The second part of the GProfile section reports the GClass-specific means
and probabilities for the response variables. The computation of this part
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of the GProfile output is similar to the computation of the same kinds of
numbers in the Profile output.

14.5 Profile-Longitudinal

For Markov models, Latent GOLD Advanced 5.1 implements a special type
of Profile output and an accompanying plot called Profile-Longitudinal. It
can be used to investigate the time trend in the indicators, per Class, per
State, overall, and observed; that is, it reports the time-specific estimated
and observed probabilities/means for the indicators. The computations to
obtain the reported probabilities and means are the same as for (marginal)
Profile, with the difference that this is done separately for each time point.

14.6 ProbMeans

In models with CFactors, the Probmeans output reports the average CFac-
tor posterior means for categories of the indicators, the dependent variable,
and covariates. In Markov models, ProbMeans reports information on both
Classes and States.

14.7 Two-level and Longitudinal Bivariate Residuals

Latent GOLD 5.1 Advanced/Syntax implements two types of BVRs called
two-level BVRs and longitudinal BVRs. Two-level BVRs are reported in
multilevel Cluster and DFactor models, and longitudinal BVRs in Markov
models.

The two types of two-level BVRs reported in multilevel Cluster and DFac-
tor models are BVR-group and BVR-pairs. These quantify how well the
multilevel model picks up between-group differences and within-group sim-
ilarities in responses on the indicator concerned (Nagelkerke, Oberski, and
Vermunt, in press). BVR-group is equivalent to the BVR obtained by using
the groupid variable also as a nominal covariate (with its effect set equal to
0). The BVR-pairs computation for categorical indicators involves setting
up the two-way cross-tabulation for the responses of pairs of observations
within groups. The estimated frequencies E(nm,m′) are obtained as follows:

E(nm,m′) =
J∑
j=1

Ij∑
i=1

∑
i′<i

wiwi′
Kg∑
xg=1

P̂ (yjit = m|xg)P̂ (yji′t = m′|xg)P̂ (xg|zj,yj),
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with

P̂ (yjit = m|xg) =
K∑
x=1

P̂ (yjit = m|x, xg)P̂ (x|xg).

The tables with observed and estimated frequencies are made symmetric
since the order of the observations within pairs is arbitrary: the new off-
diagonal entries become (nm,m′ + nm′,m)/2 and (E(nm,m′) + E(nm′,m))/2,
respectively. Then, the table with estimated frequencies is adjusted using a
series of IPF cycles to equate its univariate margins to those of the observed
table. Because of the symmetry within pairs, in the Pearson chi-squared
computation, symmetric off-diagonal cells are collapsed. BVR-pairs equals
the resulting chi-squared value divided by M · (M − 1)/2 (the number of
parameters of a symmetric association) and by the average group size.

The three types of longitudinal BVRs are BVR-time, BVR-lag1, and
BVR-lag2. These indicate whether the estimated Markov model captures the
time trend, the first-order autocorrelation, and the second-order autocorre-
lation, respectively, for the indicator concerned. BVR-time is equivalent to
the BVR obtained by using the time variable as a nominal covariate (possi-
bly with its effects set equal to 0). For categorical indicators, BVR-lag1 and
BVR-lag2 are obtained by cross-tabulating the responses at time points t−1
and t (BVR-lag1) and at t− 2 and t (BVR-lag2). For BVR-lag1,

E(nm,m′) =
I∑
i=1

wi

Ti∑
t=2

Kd∑
xdt−1=1

Kd∑
xdt=1

P̂ (yit−1 = m|xdt−1)P̂ (yit′ = m′|xd)P̂ (xdt−1, x
d
t |zj).

Again the margins of the estimated table are adjusted to be equal those of
the observed table. BVR-lag1 equals the Pearson chi-squared value for this
table divided by (M − 1)2 and by the average number of lag-1 responses per
individual. BVR-lag2 is computed in a similar way.

As for standard BVRs, with ordinal variables, the two-level and longitu-
dinal BVRs are computed using after adjusting the observed frequencies in
the table concerned to be in agreement with an ordinal association structure.
For other scale types, the two-level and longitudinal BVRs these are scaled
unexplained variances (BVR-group and BVR-time) and scaled squared differ-
ences between observed and estimated correlations (BVR-pairs, BVR-lag1,
BVR-lag2).
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14.8 Frequencies

Frequencies are not reported in multilevel LC models.

14.9 Estimated Values

In Regression models with CFactors, GClasses, and/or GCFactors, the re-
ported estimated values are obtained by aggregating over these latent vari-
ables (integrating over CFactors and GCFactors, and summing over GClasses).
As far as these latent variables is concerned, the reported estimated values
can be interpreted as model predictions.

In Cluster and DFactor models with CFactors and/or GCFactors, the
reported estimated values are obtained by computing the model probabilities
for CFactors and GCFactors values equal to 0 (rather than integrating over
these continuous latent variables). In Markov models, Estimated Values
contains the four sets of model probabilities/means appearing in equation
(32).

14.10 Classification

The Standard Classification output provides information on the CFactor and
GCFactor posterior means Ê(Fdi|zi,yi) and Ê(F g

dj|zj,yj), the GClass poste-

rior probabilities P̂ (xg|zj,yj) and the modal GClass for each data pattern,
and the States posterior probabilities P̂ (xd|zj,yj) and the modal State for
each measurement occasion.

The posterior means for the continuous latent variables are obtained using
Gauss-Hermite quadrature; for example,

Ê(Fdi|zi,yi) =

∫∞
−∞ Fdi f(Fdi) f(yi|zi, Fdi) dFdi∫∞
−∞ f(Fdi) f(yi|zi, Fdi) dFdi

≈
∑B
bd=1 Fbd f(yi|zi, Fbd)Pbd∑B
bd=1 f(yi|zi, Fbd)Pbd

.

In Markov and multilevel models with covariates, the Model Classification
output section reports the State and GClass membership probabilities given
time-varying and group-level covariates, P̂ (xd|zit) and P̂ (xg|zgj ). In Markov
models, one also obtains joint classification: that is, for State given Class
and State given previous State and Class.
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14.11 Output-to-file Options

The Standard Classification option can be used to write the CFactors and
GCFactors posterior means, the GClasses posterior probabilities, and the
modal GClass to an output file. In models with GClasses, Model Classifica-
tion saves the classification of groups into GClasses based on group covariates
to the output file. In Markov models, one obtains classification information
for Classes and States, as well as joint classification, which is State given
Class and State given previous State and Class.

The Individual Coefficients corresponding to CFactor effects are com-
puted in a special way:

λ̂iqd =
K∑
x=1

P̂ (x|zi,yi)
[
Ê(Fdi|zi,yi, x) λ̂xqd

]
,

where Ê(Fdi|zi,yi, x) is the posterior mean of Fdi given that i belongs to
latent class x. The λ̂iqd can be used together with the β̂iq to obtain HB-like

predicted values for case i. The posterior standard deviation of λ̂iqd equals

σ̂
λ̂iqd

=

√√√√ K∑
x=1

P̂ (x|zi,yi)
[
Ê(Fdi|zi,yi, x) λ̂xqd − λ̂iqd

]2
,

HB-like individual coefficients for a ”full” intercept or predictor term may
also be obtained by summing the various individual coefficient components
for that term. For example, for a random-intercept model such as given in
equation (35), the HB-like individual coefficient for the “full” intercept is
computed by summing β̂i0 and λ̂i01.

In multilevel models, the Cook’s D value is computed per group rather
than per case. Thus, rather than for detecting influential cases, it can be
used for detecting influential groups.
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Part III: Syntax Model and Output
Options

15 Introduction to Part III: Syntax Models

With the Latent GOLD Syntax module, you can specify many types of ad-
ditional models compared to the Basic and Advanced modules. The most
important additional modeling and output options are:

• The flexibility through the intuitive LG-Equations language which al-
lows among others defining conditional effects and interaction effects,
and specifying starting values and parameter restrictions, such as fixed
value and monotonicity constraints, and equality and ratio constraints
across parameters.

• A syntax model may contain any combination of nominal, ordinal,
and continuous latent variables. This expands upon the GUI mod-
ules, which allow the use of either a single nominal latent variable
(Cluster/Regression/Choice/Markov) or multiple ordinal latent vari-
ables (DFactor), possibly combined with continuous factors (CFactors).
With the syntax module, one can specify easily, for example, a model
with two nominal latent variables or with one nominal and one ordi-
nal latent variable. Another example is a model with ordinal latent
variables at the group level.

• The modeling of continuous latent variables is more general than what
is possible in the GUI models. In LG-Syntax models, continuous latent
variables can have free variances and be correlated. Also, it is pos-
sible to regress continuous latent variables on independent variables,
discrete latent variables, and higher-level continuous latent variables.
This makes it possible to specify factor analysis and item response
models with covariates, as well as factor mixture models in which fac-
tor means and (co)variances differ across latent classes, and many other
kinds of models.

• Discrete (nominal/ordinal) latent variables can be used in a path model
in which one discrete latent variable is used as a predictor in the regres-

125



sion model for another discrete latent variable. Discrete latent variables
may also be predicted by continuous latent variables.

• For models with multiple observations per case (models with a case id
and repeated measurements for each id) it is possible to specify more
than one dependent variable. This, in fact, expands the Regression and
Choice modules by allowing for multiple dependent variables. This fea-
ture may be used to specify growth models for multivariate responses,
as well as other kinds of multivariate regression models. An application
in choice modeling is the simultaneous modeling of choice variable with
other types of dependent variables (e.g., ratings or counts).

• Latent Markov models, also known as the hidden Markov or latent
transition models, can be specified with the Markov GUI submodule,
which is part of Latent GOLD 5.1 Advanced. LG-Syntax 5.1 provides
various more extended models with dynamic latent variables, such as
latent Markov models with multiple dynamic latent variables, second-
order models, and multilevel variants of the latent Markov model (see,
for example, Crayen et al. 2012). The dynamic latent variable option
can also be used to define multilevel LC models with arbitrary numbers
of levels.

• Another modeling option in LG Syntax 5.1 is the possibility to define
continuous-time latent Markov models. These are latent Markov mod-
els that accommodate measurements which are not equally spaced in
time.

• Latent GOLD 5.1 Basic includes a Step3 GUI submodule for bias ad-
justed step-three modeling (and scoring). LG-Syntax 5.1 provides var-
ious more extended step-three modeling possibilities, such a step-three
models with both covariates and dependent variables and/or multiple
latent variables, step-three latent Markov models, and step-three mul-
tilevel LC models. Moreover, the default rescaling of the posteriors can
be suppressed by using the keyword “norescale” which may be useful
if one specifies a step3 model using only a subset of the original latent
classes.

• Three additional starting values options are the possibility to use New-
ton iterations (in addition to EM) in the starting values procedure; to

126



use starting values for factor loading based on a Principal Components
Analysis (PCA) of the full sample, and to use an annealing EM algo-
rithm with more fuzzy posteriors during the first 100 EM iterations of
the start sets and where fuzzyness is reduced every 5 iterations.

• For ordinal dependent variables, in additional to the adjacent-category
logit model, in LG-Syntax one can specify models based on cumulative
responses probabilities – cumulative logit, probit, log-log, linear and
log-linear models – as well as models for continuation-ratio or sequential
logits. The probit, log-log, linear, and log-linear specifications also yield
new models for dichotomous responses.

• LG-Syntax 5.1 contains various additional modeling options for con-
tinuous dependent variables. In addition to linear regression models
with normal error distributions, one can also use gamma, beta, or von
Mises distributions, for non-negative, 0-1 range, and circular variables,
respectively.

• In LG Syntax 5.1 is the possibility to specify a log-linear scale factor
model for categorical response variables (nominal, all ordinal types, all
choice types). Since the scale factor is inversely related to the response
uncertainty, this option makes it possible to model heterogeneity in
response (un)certainty.

• There are various options to influence the coding and/or meaning of
parameter sets. These are referred to as ˜nom, ˜ord, ˜squ, ˜dif, ˜ful,
˜tra, ˜err, ˜wei, ˜int, and ˜mis. The option ˜wei, for example, allows
defining models with a cell weight vector.

• In LG-Syntax, it is possible to specify user-defined Wald tests, to per-
form (asymptotic) power computation for Wald and likelihood-ratio
tests, and to request Score tests and EPCs (expected parameter changes)
for restricted parameters.

• LG-Syntax implements a rather general method for standard error com-
putation in stepwise estimation; that is, to account for the additional
variance caused by using estimates from a previous step as fixed pa-
rameters (Gong and Samaniego 1981; Oberski and Satorra, 2013). This
method was used by Bakk, Oberski, and Vermunt (2014) for the ad-
justment of standard errors in three-step latent class analysis by taking
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into account that the third step uses quantities based on parameters
estimated in the first step, which themselves have a particular variance-
covariance matrix. For more information on this approach, consult the
above references and the LG-Syntax guide.

• In Latent GOLD GUI models, the label switching problem is resolved
by reporting latent classes sorted from large to small, respecting the
imposed constraints. With the LG-Syntax output option “reorder”,
one achieves the same.

• There are three additional Bayes options available in LG-Syntax: per-
class, percategory, and uniform (see section on Bayes constants or the
LG-Syntax manual for more information).

• LG-Syntax implements a procedure to obtain goodness-of-fit tests un-
der the MAR (missing at random) assumption which also underlies
maximum likelihood estimation of the model parameters.

Latent GOLD Syntax not only contains additional modeling and output
options, it also implements options for Monte Carlo simulation, multiple
imputation,54 n-fold cross-validation, writing detailed output to text files,
and re-using models with saved parameters. The Syntax Guide provides
a complete description of Syntax and explains how to use the LG-Syntax
system.

The remainder of Part III of the Technical Guide provides technical infor-
mation on various of the modeling and output options which are specific to
the Latent GOLD Syntax system. The next section discusses alternative re-
gression models for dichotomous, ordinal, and continuous variables, log-linear
scale factor models, regression models with cells weights, and continuous-time
latent Markov models. Then, attention is paid to alternative complex sam-
pling variance estimators, power computation for Wald and likelihood-ratio
tests, Score tests and EPCs, adjusting chi-squared tests for missing values,
and identification checking.

54Various multiple imputation methods using a LC model are implemented. These
include bootstrapping, divisive LC analysis, Gibbs sampling, and using a Dirichlet Process
prior (Vidotto, Kaptein, Vermunt, 2015).
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16 Various Modeling Options which are Spe-

cific to Syntax

This section provides technical information on various modeling options which
are specific to the LG-Syntax:

1. Alternative regression models for dichotomous and ordinal dependent
variables;

2. Alternative regression models for continuous dependent variables;

3. Log-linear scale factor models for categorical dependent variables;

4. Regression models with cell weights (w̃ei option);

5. Continuous-time Markov models.

16.1 Alternative Regression Models for Dichotomous
and Ordinal Dependent Variables

In Latent GOLD Basic and Advanced modules, a dichotomous dependent
variable is modeled using a binary logit model, by defining it to be either
nominal, ordinal, or (when 0/1 coded) a binomial count. An ordinal de-
pendent variable is modeled in the GUI using an adjacent-category ordinal
logit model, which is a restricted multinomial logit model (see section 2.3).
LG syntax implements six alternative regression models for dichotomous and
ordinal response variables:

1. the cumulative logit model (clogit),

2. the cumulative probit model (probit),

3. the cumulative negative log-log model (loglog1),

4. the cumulative complementary log-log model (loglog2),

5. the cumulative linear model (lin)

6. the cumulative log-linear model (log)

7. the continuation-ratio or sequential logit model (seqlogit1), and
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8. a second variant of the continuation-ratio or sequential logit model
(seqlogit2).

While these models can be used for ordinal response variables, when re-
sponses are dichotomous, they reduce to the binary logit (1, 5, and 6), probit
(2), and log-log models (3 and 4), respectively. Each of the four cumula-
tive models uses a cumulative link function transforming the probability of
responding in category m or higher, P (y ≥ m|zi), into the linear predictor,
ηm|zi . Using the notation from section 2.3,

ηm|zi = log
P (y ≥ m|zi)
P (y < m|zi)

,

ηm|zi = InverseCumulativeNormal[P (y ≥ m|zi)],
ηm|zi = − log{− log[P (y ≥ m|zi)]},
ηm|zi = log{− log[1− P (y ≥ m|zi)]},
ηm|zi = P (y ≥ m|zi), and

ηm|zi = log[P (y ≥ m|zi)],

are the link functions for the cumulative logit, probit, negative log-log, com-
plementary log-log, linear, and log-linear models, respectively.

The corresponding inverse link functions which transform ηm|zi back to
P (y ≥ m|zi) are

P (y ≥ m|zi) =
exp(ηm|zi)

1 + exp(ηm|zi)
,

P (y ≥ m|zi) = CumulativeNormal(ηm|zi),

P (y ≥ m|zi) = exp(− exp(−ηm|zi)],
P (y ≥ m|zi) = 1− exp[− exp(ηm|zi)],

P (y ≥ m|zi) = ηm|zi , and

P (y ≥ m|zi) = exp(ηm|zi),

respectively. The linear model for ηm|zi has the following form:

ηm|zi = β0m +
P∑
p=1

βpzpi.

As in the adjacent-category ordinal logit model, intercepts (called thresholds)
are category specific, whereas slopes are constant across categories. The βp
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parameters have the expected interpretation: the higher the values of zpi
the more likely the higher responses. It is important to note that other
software may instead model P (y ≤ m|zi), sometimes with reversed signs
for the slope parameters. Whereas our parameterization yields decreasing
thresholds, the other parameterization yields increasing thresholds, but the
two are equivalent except for the sign. Another difference is that our negative
log-log corresponds to a complementary log-log for P (y ≤ m|zi) and vice
versa. Note that the negative log-log model is equivalent to a complementary
log-log model for a reverse coded dependent variable.

Note that the identity link (the linear model) does not guarantee that
probabilities stay in the 0-1 range and the log link does not guarantee that
probabilities are smaller than 1. Therefore, special care should be taken
when specifying (user-defined) starting values. Moreover, there is no guar-
antee that the algorithms will converge. On the other hand, sometimes it is
convenient to define constraints on probabilities in linear or log-linear form,
which is why we implemented these models.

The sequential logit model (seqlogit1) is a model for

ηm|zi = log
P (y ≥ m|zi)

P (y = m− 1|zi)
,

or

P (y ≥ m|zi; y ≥ m− 1) =
exp(ηm|zi)

1 + exp(ηm|zi)
,

that is, for the probability of answering category m or higher conditional on
answering category m-1 or higher. The second type of sequential logit model
(seqlogit2) is a model for

ηm|zi = log
P (y = m|zi)
P (y < m|zi)

,

or

P (y = m|zi; y ≤ m) =
exp(ηm|zi)

1 + exp(ηm|zi)
,

that is, for the probability of answering category m conditional on answering
category m or lower. It should be noted that second model is equivalent
to the first one after reversing the order of the categories of the dependent
variable.

For more information on the ordinal regression models we refer to text-
books on categorical data analysis. More specifically, see chapter 7 of Agresti’s
(2002) excellent “Categorical Data Analysis” book.
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16.2 Additional Regression Models for Continuous
Dependent Variables

Three alternative regression models are implemented for specific types of
continuous dependent variables. These are:

1. A gamma regression model for continuous variables taking on non-
negative values. The link function is log, meaning that the expected
value µt,x,zi is modeled with a linear model after a log transformation.

2. A beta regression model for continuous variables taking on values be-
tween 0 and 1 (excluding these numbers). The regression model for
µt,x,zi uses a logit link.

3. A von Mises regression model for circular data (data indicating the
position on a circle) and ranging between 0 and 2π. The regression
model for µt,x,zi uses an identity link.

Note that these are all two parameter distributions, implying that in
addition to a regression equation for the expected values µt,x,zi , there is a
variance or dispersion parameter σ2

t,x. To supplement section 2.2, we now
describe the conditional distribution of yit for the three types of continuous
dependent variables in terms of µt,x,zi and σ2

t,x.
The gamma distribution with mean µt,x,zi , shape 1

σ2
t,x

, and scale µt,x,ziσ
2
t,x

is defined as follows:

f(yit|x, zi) =
1

Γ
(

1
σ2
t,x

) (
µt,x,ziσ

2
t,x

) 1

σ2
t,x

exp

(
− yit
µt,x,ziσ

2
t,x

)
y

1

σ2
t,x

it .

Note that similar to models for overdispersed counts, we model the inverse
of the scale rather than the scale itself.

The beta distribution with mean µt,x,zi and shape parameters
µt,x,zi
σ2
t,x

and
1−µt,x,zi
σ2
t,x

is defined as follows:

f(yit|x, zi) =
Γ
(

1
σ2
t,x

)
Γ
(
µt,x,zi
σ2
t,x

)
Γ
(

1−µt,x,zi
σ2
t,x

)y
µt,x,zi
σ2
t,x

−1

it (1− yit)
1−µt,x,zi
σ2
t,x

−1

.
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The von Mises distribution with mean µt,x,zi and scale 1
σ2
t,x

has the fol-

lowing form

f(yit|x, zi) =
cos(yit − µt,x,zi)

2πI0

(
1
σ2
t,x

)
σ2
t,x

,

where I0 (·) is the modified Bessel function of order 0.

16.3 Log-linear Scale Factor Models for Categorical
Dependent Variables

An interesting modeling feature is the possibility to include a scale factor
in regression models for categorical response variables; that is, in models for
nominal and the various types of ordinal and choice dependent variables.
A scale factor is a term by which all parameters in the regression model
are multiplied, and which thus allows modeling proportionality of parame-
ter values across groups. The inverse of the scale factor is proportional to
the standard deviation of the error distribution when using the underlying
latent variable interpretation of the categorical response regression model
concerned. Therefore, this option makes it possible to model heterogeneity
in response (un)certainty.

When the scale model is used the linear term ηm|zi in the regression
model for the categorical dependent variable is replaced by ηm|ziϕzi , where
ϕzi represents the multiplicative scale factor. For example, in the case of
a nominal dependent variable, the equation for the response probability for
category m becomes

P (yi = m|zi) =
exp(ηm|ziϕzi)∑M

m′=1 exp(ηm′|ziϕzi)
.

The scale factor is modeled by a log-linear equation, yielding a flexible ap-
proach for modeling its dependence on latent and/or independent variables.
Moreover, the log-linear equation guarantees that the scale factor remains
non-negative. This implies that

logϕzi = ξ0 +
P∑
p=1

ξpzpi;

or

ϕzi = exp

ξ0 +
P∑
p=1

ξpzpi


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Vermunt (2013) provides a more detailed description of these log-linear scale
models, and Magidson and Vermunt (2007), and Magidson, Thomas, and
Vermunt (2009) present applications of latent class models with scale factors.

16.4 Regression Models with a Cell Weight Vector
(“˜wei” Option)

The specification “˜wei” is used to include fixed parameter values in multi-
plicative form in models for nominal and ordinal latent or dependent vari-
ables. In the log-linear analysis literature, these are referred to as cell weights
(Clogg and Eliason, 1987; Vermunt, 1997). A cell weight is equivalent to what
is known as an offset in generalized linear modeling, but then in exponen-
tial form; thus, a cell weight equals exp(offset) or an offset equals log(cell
weight) (Agresti, 2002). Among other uses, cell weights can be used to fix
probabilities to specific values.

The model for a nominal or ordinal variable with a cell weight has the
following form:

P (yi = m|zi) =
exp(ηm|zi)cwm|zi∑M

m′=1 exp(ηm′|zi)cwm′|zi
.

The cell weight cwm|zi is a nonnegative term by which exp(ηm|zi) – the
exponent of the linear term – is multiplied. By default the cell weights equal
1, meaning that they have no impact. Note also that specifying a cell weight
equal to 0 fixes the corresponding probability to 0.

We use the cells weights ourselves in some GUI models. That is, to
define mover-stayer models, in which transition probabilities are fixed to 0
for the stayer class, to define manifest Markov models in which one indicator
is perfectly related to the classes, and to define step-three models using ML
adjustments in which the assigned class serves as an indicator with “known”
response probabilities.

16.5 Continuous-Time Markov Models

LG-Syntax 5.1 contains an option for defining continuous-time (discrete-
state) latent Markov models (Jackson and Sharples, 2002; Sharples et al.,
2003; Böckenholt, 2005). In these models, the transition probabilities be-
tween measurement occasions are modeled as a function of transition inten-
sity parameters and the length of the time interval. Transition intensities are
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in fact equivalent to hazard rates in survival models; that is, the continuous-
time equivalents of the probability of experiencing an event or transition
(Cox and Miller, 1965; Kalbfleisch and Lawless, 1985).

When the data set contains observations at equidistant time intervals,
one will typically use a discrete-time latent Markov model. However, in such
situations, one can also use a continuous-time model, which will usually yield
the same fit (same log-likelihood value), but the transition parameters take
on a different interpretation. However, the continuous-time model is espe-
cially useful when observations do not occur at equidistant time intervals;
that is, if the measurement occasions consist of snapshots of the underlying
continuous-time process taken at arbitrary points in time. The only addi-
tional information that is needed to define a continuous-time latent Markov
model in Latent GOLD 5.1 is information on the length of the time intervals
between the measurement occasions.

We denote the transition intensity for the transition between origin state s
and destination state r by qr|s,zi and the length of the time interval concerned
by δit. The transition intensity matrix Qi is a K by K matrix with the qr|s,zi
as off-diagonal elements and the negative of the row sums of the off- diagonal
elements on the diagonals. For K=3 (three latent states), Qi equals

Qi =

 −q2|1,zi − q3|1,zi q2|1,zi q3|1,zi
q1|2,zi −q1|2,zi − q3|2,zi q3|2,zi
q1|3,zi q2|3,zi −q1|3,zi − q2|3,zi

 .
LetPit be a K by K matrix with the transition probabilities for person i at
time interval t. The key relationship is the following:

Pit = Exp(δitQi),

where Exp(·) is the matrix exponential. This equation shows the connec-
tion between the continuous-time transition intensities and the transition
probabilities for the observed time intervals. As in discrete-time models, the
transition probabilities define the model structure and the likelihood that is
maximized to obtain the parameter estimates.

Because transition intensities are nonnegative, the qr|s,zi are modeled us-
ing a log-linear model; that is,

qr|s,zi = exp(ηr|szi) = exp(γrs0 +
P∑
p=1

γrspzpi).
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It should be noted that the γ parameters are defined only for r 6= s. Hence,
whereas in discrete-time models, transition probabilities are functions of logit
coefficients, in continuous-time models, they are functions of log transition
intensity parameters and time interval lengths.
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17 Various Output Options which are Spe-

cific to Syntax

This section provides technical information on various output options which
are specific to the LG-Syntax:

1. Adjust chi-squared statistics with missing data;

2. Alternative variance estimators;

3. Power computation for Wald tests;

4. Power computation for likelihood-ratio tests;

5. Score tests and EPCs;

6. Identification checking.

7. Continuous-factor and random-effect covariances

17.1 Adjusted Chi-squared Statistics with Missing Data

In models for categorical dependent variables, Latent GOLD reports goodness-
of-fit chi-squared statistics. However, with missing values on the dependent
variables, these statistics provide a simultaneous test to both the model of
interest and the assumption that the missing data is MCAR (missing com-
pletely at random) (Vermunt, 1997). LG-Syntax implements a simple pro-
cedure to obtain goodness-of-fit tests under the weaker MAR (missing at
random) assumption which underlies maximum likelihood estimation of the
model parameters.

The procedure begins by estimating the saturated model with the records
with missing data included and computing the likelihood-ratio, Pearson, and
Cressie-Read chi-squared statistics for this model. Since the saturated model
itself fits perfectly, the resulting chi-squared statistics test only the MCAR
assumption. By subtracting the resulting chi-squared values from those of
the Latent GOLD model of interest and adjusting the number of degrees
of freedom in the appropriate manner, we then obtain the corresponding
chi-squared tests for the model of interest under MAR.

Chi-squared statistics adjusted for missing data are obtained with the
output option “MARchi2”. It should be noted that this option should not
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be used in tables with more than 100,000 cells, because otherwise estimation
of the saturated model may take very long. Moreover, chi-squared statistics
for such tables will not be very meaningful.

These chi-squared adjustments can also be used when bootstrapping the
distribution of the chi-squared statistics.

17.2 Other Variance Estimators

17.2.1 Complex sampling standard errors

The options for dealing with complex sampling designs are expanded in LG-
Syntax beyond the capabilities of Latent GOLD Advanced. Specifically, in
addition to obtaining complex sampling standard errors based on the Taylor
linearization estimator (see section 13), LG-Syntax implements three alterna-
tive methods: jackknife, nonparametric bootstrap, and replicate weights. In
these resampling procedures the elements of the variance-covariance matrix
of the parameter estimates are obtained as follows:

Σresampling,k,k′ =
R∑
r=1

ωr(ϑ̂kr − ϑ̂k)(ϑ̂k′r − ϑ̂k′),

where ϑ̂kr is the estimate of parameter k obtained with resample r, ϑ̂k is the
maximum likelihood estimate, and ωr is the weight given to resample r. The
methods differ in the way the replicate samples are obtained and in the value
of ωr.

In the jackknife procedure, the replicates are obtained by leaving out one
PSU (R is thus the number of PSUs in the sample) and upweighting the
other PSUs in the same stratum by a factor Co/(Co − 1), where Co is the
number of PSUs in stratum o. The value of ωr is (Co − 1)/Co.

In a nonparametric bootstrap, replicate samples are obtained by sampling
Co−1 PSUs with replacement from each stratum and the sampled PSUs are
weighted by Co/(Co − 1). The value of ωr is 1/R.

The last option is that of R sets of replicate weights, which are part of the
survey. The R resamples are combined with a ωr value equal to 1/(R·(1−c)2),
where 1-c is the so-called average perturbation factor used in the construction
of the weigths. We assume that this factor equals 0.5, yielding a ωr equal to
4/R.

It should be noted that although in theory this should not occur, when
using the complex sampling standard error computation option, it may hap-
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pen that some strata consist of a single PSU. In LG-Syntax implements three
ways of dealing with this problem:

• certain: in the linearization estimator the single PSU has a contribu-
tion of 0 to the covariance of the gradients; in the jackknife and the
bootstrap the single PSU is always included.

• scaled: is the same as certain but the variances are inflated by the
fraction of certain strata.

• centered: in the linearization estimator gradients of the single PSU are
compared with the overall gradients (which equal 0); in the jackknife
the single PSU is treated in the same way as the other observations; in
the bootstrap it is included with probability 0.5.

17.2.2 Other standard errors

The jackknife and nonparametric bootstrap can also be used without complex
sampling. In such cases, there is a single stratum and the observations are the
PSUs. In the jackknife procedure, the replicates will then thus be obtained by
leaving out one observation, and in the nonparametric bootstrap by sampling
observations with replacement from the total data set.

In LG-Syntax 5.1 it possible to obtain standard errors based on the ex-
pected information matrix. Note that this requires processing all possible
data patterns, which is feasible only for frequency tables with not too many
cells. In other situations, one may request the Monte Carlo version of the
expected information matrix, which is obtained by simulating a large num-
ber of observations from the population defined by the model estimates. The
expected information matrix is computed in a similar way as its approximate
based on the outer-product of gradients (see equation 22), but involves a sum
over all possible data patterns (I∗) and weighting by the estimated expected
frequencies (m̂i∗); that is, Σ̂expected(ϑ) = B̂∗−1, where element B∗kk′ of B∗ is
defined as

B∗kk′ =
I∗∑
i∗=1

m̂i∗
∂ log f(yi∗|zi∗, ϑ)

∂ϑk

∂ log f(yi∗|zi∗, ϑ)

∂ϑk′
.

The Monte Carlo version B∗∗ based on a sample of R observations (with
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R >> N) is obtained as follows

B∗∗kk′ =
N

R

R∑
r=1

∂ log f(yr|zr, ϑ)

∂ϑk

∂ log f(yr|zr, ϑ)

∂ϑk′
.

The expected information matrix is needed, among others, for the power com-
putation for Wald statistics. Also Score tests and EPCs may be computed
using the expected information matrix.

17.3 Power Computation for Wald Tests

In LG-Syntax 5.1, it possible to perform power computations for Wald tests,
including for user-defined Wald test (Gudicha, Tekle, Vermunt, in press).
Key in the computation of the power or the required sample size is the
noncentrality parameter κ. It is defined as follows

κ = N (Cϑ)′
(
C Σ̂(ϑ)C

′)−1
(Cϑ) ,

where C defines the contrast of parameters ϑ to be tested by the Wald test
and Σ is the parameter covariance matrix based on the expected information
matrix (for a single observation). Let, moreover, CVα be the critical value
corresponding to type I error α obtained from the (central) chi-squared dis-
tribution with the appropriate number of degrees of freedom. The power 1-β
given sample size N is the probably of obtaining a value larger than CVα

from the chi-squared distribution with non-centrality parameter κ.
To compute the required sample size N to achieve power 1-β, one deter-

mines the value of κ corresponding to 1-β, and computes N by

N =
κ

(Cϑ)′
(
C Σ̂(ϑ)C′

)−1
(Cϑ)

.

17.4 Asymptotic Power Computation for Likelihood-
Ratio Tests

LG-Syntax can be used for computing the asymptotic power of likelihood-
ratio tests using the procedure described in Gudicha, Schmittmann, and
Vermunt (in press; under review). This involves defining and running H1
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and H0 models using either an exemplary data set or a large simulated data
set under the H1 model.55

As in the power computation for Wald tests, we need to obtain the non-
centrality parameter κ given sample size N . It is defined as follows:

κ = N 2[E(logL1)− E(logL0)],

where E(logL1) and E(logL0) represent the expected log-likelihood values
(scaled to 1 observation) under the H1 and H0 model, respectively. The
power 1-β is the probably of obtaining a value larger than CVα from the
chi-squared distribution with non-centrality parameter κ. Note that CVα is
the critical value corresponding to type I error α obtained from the (central)
chi-squared distribution with the appropriate number of degrees of freedom.

For the computation of the sample size, we reverse the above relationship:

N =
κ

2[E(logL1)− E(logL0)]

where κ is now the value of the noncentrality parameter corresponding with
the required power level.

17.5 Score Tests and EPCs

LG-Syntax 5.1 implements a powerful tool for testing parameter constraints;
that is, it reports a score test for each restriction and the expected parameter
changes when a restriction is removed. This output can be requested with
the output command “ScoreTest”. In that case, one obtains:

1. A score test in the Parameters output for each restricted parameter
set (Oberski, van Kollenburg, and Vermunt, 2013). Score tests are also
called Lagrange multiplier tests or modification indices. Note that a
score test is the estimated decrease of minus twice the log-likelihood
value when relaxing the constraint of interest.

2. An EPC(self) value for each restricted parameter in the Parameters
output (Oberski and Vermunt, under review). By EPC(self) we refer
to the expected changes in the parameters of the restricted set itself
after removing the restriction concerned.

55Note that it also possible to compute the power of likelihood-ratio tests using the
Monte Carlo power option.
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3. An output section nested within Parameters containing the EPC(other)
values for all free parameters (Oberski, 2014; Oberski and Vermunt,
2013, Oberski, Vermunt, and Moors, 2015). These are the expected
parameter changes in the other parameters when the restriction con-
cerned is removed. EPC(other) statistics can be used for sensitivity
analyses; that is, to determine whether a restriction affects the param-
eters of primary interest. We therefore also refer to these statistics as
EPC(interest).

Let Σ11 denote the covariance matrix of the free (other) parameters.
What we need in the computation of Score test and EPC’s is the negative of
second derivatives for the restricted (self) parameter set, H22, the negative
of the cross-derivatives, H12, and the gradients of the restricted parameters
g2. The Score test is obtained as

Score = g
′

2Σ22g2,

with
Σ22 =

(
−H22 −H12Σ11H

′

12

)−1
.

EPC(self) is defined as

EPC(self) = Σ22g2,

and the EPC(other) equals

EPC(other) = Σ11H
′

12Σ22g2 = Σ11H
′

12EPC(self).

Score tests and EPCs can be requested in combination with various types of
variance estimators (standard, robust, fast, and expected). For more infor-
mation on this, see Oberski and Vermunt (under review).

17.6 Identification Checking

Certain latent class and mixture models for categorical dependent variables
and/or binomial counts may not be identified. This means that the solu-
tion is not unique in the sense that different combinations of parameter val-
ues yield the same log-likelihood value, or equivalently, the same estimated
probabilities. LG-Syntax contains a procedure to detect whether there are
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such identification problems. This procedure is activated by including the
command ‘identification[=%d]’ in the list of the output options.

The identification check implemented in LG-Syntax makes use of the
Jacobian matrix (J). A model is locally identified if the rank of the Jacobian
matrix equals the number of free model parameters. Conversely, if the rank is
lower than the number of free model parameters, the model is not identified.
Note that we used the term local identification, which refers to the fact that
conditional on a particular set of parameters there is no other set in the
direct neighborhood that gives the same model probabilities.

Element (i, k) of the Jacobian matrix is defined as

Jik =
∂P (yi|zi)
∂ϑk

,

which is the first derivative of the probability of having data pattern i (be-
longing to cell i of the frequency table) towards parameter k. These deriva-
tives are obtained for all possible data patterns (and if there are very many,
for a large enough number of data patterns).

LG-Syntax computes the Jacobian and evaluates its rank multiple times
(the default is 10 times) using different random parameter values. The re-
ported ‘number of non-identified parameters’ is the rank deficiency that is
encountered most of the time. The ‘Iterationdetails’ output listing reports
the rank deficiency for each trial, from which it can be seen that typically
most or all trials give the same rank deficiencies.

The rank of J is determined as follows: the square matrix J
′
J is com-

puted, the eigenvalues of this matrix are calculated, and number of eigen-
values which are at least 1.0e-15 times as large as the largest eigenvalue is
counted. That is, eigenvalues less than 1.0e-15 times the largest correspond
to rank deficiencies.

It should be noted that this procedure does not prove global identifica-
tion, but instead checks an important necessary condition for global identifi-
cation, which is local identification for certain sets of parameters. In practice,
in turns out that, except for computational precision issues, it does not make
a difference which parameter values are used to determine the rank of the
Jacobian. More specifically, if a model contains two non-identified parame-
ters, the rank of the Jacobian will be 2 less than the number of parameters
regardless of the parameter values used to evaluate the Jacobian.
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17.7 Continuous-Factor and Random-Effect Covariances

In Syntax models, the (co)variances of continuous factors are free parameters.
However, when numerical integration is used, the estimated parameters are
not the (co)variances themselves, but the elements of the matrix obtained
by a Cholesky decomposition of the (co)variance matrix. Let us denote this
lower-diagonal matrix by CF . The covariance matrix of the continuous latent
variables is obtained as ΣF = CF C′F . These (co)variances are reported in
the Parameters output.

In Regression GUI models, Latent GOLD provides the (co)variances of
the random effects when the model contains continuous factors. These are
obtained as follows: ΣΨ = Λ Λ′, where Λ contains the effects of the contin-
uous factors on the responses (the loadings). This formula holds when the
variances of the continuous latent variables are fixed to 1 and the covariances
are fixed to 0; that is, when the covariance matrix ΣF is an identity matrix I.
In the more general case with free continuous factor (co)variances, the covari-
ance matrix of the random effects can be obtained as follows: ΣΨ = Λ ΣF Λ′.

17.8 The LTB Method for Distal Outcomes

Lanza, Tran, and Bray (2013) proposed a method for investigating the rela-
tionship between class membership and distal outcomes, which is especially
useful with continuous distal outcomes (referred to as the LTB method).
It involves using the distal outcome as a (numeric) covariate in the latent
class model of interest, and subsequently computing output similar to what
is provided in the Profile output in Cluster models.

In Syntax models, this output is obtained using the output option “pro-
file=LTB”. It yields the class-specific means and variances for the distal out-
come(s) included in the model as (numeric) covariate(s). However, standard
errors and tests provided are somewhat ad hoc (see, Bakk, Oberski, and Ver-
munt, in press). Bakk, Oberski, and Vermunt (in press) show that correct
standard errors and tests can be obtained by combining the LTB approach
with bootstrap standard errors, which is achieved with the output option
standarderrors=npbootstrap.

The LTB procedure can also be combined with a three-step latent class
analysis. This involves using the distal outcomes as covariates in the step3
model (Bakk, Oberski, and Vermunt, in press).
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Böhning, D. (2000). Computer-Assisted Analysis of Mixtures: Meta-analysis,

Disease Mapping and Others. London: Chapmann & Hall.

Bolck, A., M.A. Croon, and J.A. Hagenaars. (2004). Estimating latent structure

models with categorical variables: One-step versus three-step estimators.

Political Analysis, 12, 3-27.

Burns, N., D.R. Kinder, S.J. Rosenstone, V. Sapiro, and the National Election

Studies. NATIONAL ELECTION STUDIES, 2000: PRE-/POST- ELEC-

TION STUDY [dataset id:2000.T]. Ann Arbor, MI: University of Michigan,

Center for Political Studies [producer and distributor], 2001. Can be down-

loaded at http://www.umich.edu/ nes/

Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An

expository note. The American Statistician, 36, 153-157.

146



Celeux, G., and Govaert, G. (1992). A classification EM algorithm for clus-
tering and two stochastic versions. Computational Statistics & Data
Analysis, 14, 315–332.

Clogg, C.C. (1981). New developments in latent structure analysis. D.J. Jackson

and E.F. Borgotta (eds.), Factor Analysis and Measurement in Sociological

Research, 215-246. Beverly Hills: Sage Publications.

Clogg, C.C. (1988). Latent class models for measuring. R. Langeheine and J.Rost

(eds.), Latent Trait and Latent Class Models. New York, London: Plenum

Press.

Clogg, C.C. (1995). Latent class models. G.Arminger, C.C.Clogg, and M.E.Sobel

(eds.), Handbook of Statistical Modeling for the Social and Behavioral Sci-

ences, 311-359. New York: Plenum Press.

Clogg, C. C., and Eliason, S. R. (1987). Some common problems in log-linear

analysis. Sociological Methods Research, 15, 4-44.

Clogg, C.C., Rubin, D.R., Schenker, N., Schultz, B., Weidman, L. (1991). Multi-

ple imputation of industry and occupation codes in census public-use sam-

ples using Bayesian logit regression. Journal of the American Statistical

Association, 86, 68-78.

Collins, L.M., Fidler, P.F., Wugalter, S.E., and Long, L.D. (1993). Goodness-

of-fit testing for latent class models. Multivariate Behavioral Research, 28,

375-389.

Collins, L.M., and Lanza, S.T. (2010). Latent class and latent transition analysis

for the social, behavioral, and health sciences. New York: Wiley.

Collins, L M. and Wugalter, S.E. (1992). Latent class models for stage-sequential

dynamic latent variables. Multivariate Behavioral Research, 27, 131-157.

Cox, D.R., and Miller, H.D. (1965). The theory of stochastic processes. London:

Methuen.

Crayen, C., Eid, M., Lischetzke, T.; Courvoisier, D.S., and Vermunt, J.K. (2012).

Exploring dynamics in mood regulation - mixture latent Markov modeling

of ambulatory assessment data. Psychosomatic Medicine, 74, 366-376.

Croon, M.A. (1990). Latent class analysis with ordered latent classes. British

Journal of Mathematical and Statistical Psychology, 43, 171-192.

Croon, M.A. (2002). Ordering the classes. J.A. Hagenaars and A.L. McCutcheon

(eds.), Applied Latent Class Analysis, 137-162. Cambridge University Press.

Dayton, C.M. (1998). Latent class scaling analysis. Thousand Oakes: Sage

Publications.

147



Dayton, C.M., and Macready, G.B. (1988). Concomitant-variable latent-class

models. Journal of the American Statistical Association, 83, 173-178.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood

estimation from incomplete data via the EM algorithm (with discussion).

Journal of the Royal Statistical Society, Ser. B., 39, 1-38.

Dias, J.G. (2004). Finite Mixture Models: Review, Applications, and Computer-

intensive Methods. Phd. Dissertation. Research School Systems, Organisa-

tion and Management (SOM), Groningen of University, The Netherlands.

Dias, J.G., and Vermunt, J.K. (2007). Latent class modeling of website users’

search patterns: Implications for online market segmentation. Journal of

Retailing and Consumer Services, 14 , 359-368.

Dillon, W.R., and Kumar, A. (1994). Latent structure and other mixture mod-

els in marketing: A integertaive survey and overview. R.P. Bagozzi (ed.),

Advanced Methods of Marketing Research, 352-388, Cambridge: Blackwell

Publishers.

Dolan, C.V., and Van der Maas, H.L.J. (1997). Fitting multivariate normal finite

mixtures subject to structural equation modeling. Psychometrika, 63, 227-

253.

Elliot, D. S., Huizinga, D. and Menard, S. (1989). Multiple Problem Youth: Delin-

quence, Substance Use and Mental Health Problems. New York: Springer-

Verlag.

Everitt, B.S. (1988). A finite mixture model for the clustering of mixed-mode

data. Statistics and Probability Letters, 6, 305-309.

Everitt, B.S., and Hand, D.J. (1981). Finite Mixture Distributions. London:

Chapman and Hall.

Follman, D.A., and Lambert, D. (1989). Generalizing logistic regression by non-

parametric mixing. Journal of the American Statistical Association, 84,

295-300.

Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data.

Journal of the American Statistical Association, 87, 476-486.

Formann, A.K., and Kohlmann,T. (1998). Structural latent class models. Socio-

logical Methods and Research, 26, 530-565.

Fox, J.-P., and Glas, G.A.W. (2001). Bayesian estimation of a multilevel IRT

model using Gibbs sampling. Psychometrika, 66, 269-286.
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19 Notation

19.1 Basic Models

f(·) density
P (·) probability
i, I case index, # of cases
t indicator index or replication index
T # of indicators
Ti # of replications for case i
yit response of case i on indicator t or replication t
m, mt category of a nominal or ordinal response variable
y∗m, yt∗m score assigned to category m of an ordinal response variable
h, H index for a set of indicators, # of sets of indicators
T ∗h # of indicators in set h
yih vector of responses in set h
x nominal latent variable, a particular latent class
K # of latent classes
`, L DFactor index, # of DFactors
x` ordinal latent variable (DFactor), a particular level of DFactor `
K` # of level of DFactor x`
x`∗x` score assigned to level x` of DFactor `
r, R covariate index, # of covariates
q, Q predictor index, # of predictors
zcovir covariate

zpreditq predictor

πm multinomial probability
π binomial probability
θ Poisson rate
µ mean of continuous yit
η linear predictor
σ2, Σ variance, variance-covariance matrix
β, γ parameter in model for yit, parameter in model for x or x`
τix known-class indicator
ai assigned class membership
oi outcome/dependent variable in step-three analysis
wi case weight
vit replications weight
u, U “covariate” pattern index, # of “covariate” patterns
i∗, I∗ unique data pattern index, # of unique data patterns
N total sample size (after weighting)
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xdt latent State at time point t
Kd number of latent States
t time variable running from 0 to Ti
d, D CFactor index, # of CFactors
Fid scores of case i CFactor d
λd an effect of CFactor d
j, J group index, # of groups
Ij # of cases in group j
yjit response of case i of group j on indicator (at replication) t
yj vector of responses of group j
g group-level quantity
xg group-level nominal latent variable, a particular group GClass
zg,covjr group-level covariate

F gjd score of group j of group-level continuous factor (GCFactor) d

γg, βg, λg group-level parameters
o, O stratum, # of strata
c, Co PSU, # of PSU’s in stratum o
swoci sampling weight
Ioc # of cases in PSU c of stratum o
No total # of PSUs in population in stratum o

19.3 Syntax Models

ϕ scale factor
φ log-linear scale factor parameter
cw cell weight
δ time interval
q transition intensity
Q transition intensity matrix
P transition probability matrix
ω weight of resample in variance formula
κ non-centrality parameter
J Jacobian matrix
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